期刊文献+

基于卷积门控循环网络的居民出行模式识别 被引量:2

Residential Travel Pattern Recognition based on Convolutional Gated Recurrent Network
下载PDF
导出
摘要 关注城市居民出行的特征及其交通方式选择行为,对于实现绿色交通具有重要的现实意义.该文基于GeoLife数据集,利用卷积神经网络(CNN)、门控循环单元(GRU)和混合模型(CNN-GRU)对居民的出行特征及规律进行研究.通过测试和对比分析表明:CNN-GRU模型具有较好的识别效果,且优于单独采用CNN和GRU分类方法的识别性能. Paying attention to the travel characteristics of urban residents and their transportation mode choice behavior has important practical significance for realizing the development of green transportation.Based on the GeoLife data set,this article uses Convolutional Neural Network(CNN),Gated Recurrent Unit(GRU)and Hybrid Model(CNN-GUR)to study residents'travel characteristics and rules.Tests and comparisons show that the CNN-GRU model has a better recognition effect,and is better than the recognition performance of the CNN and GRU classification methods.
作者 丁咏梅 黄锐 DING Yongmei;HUANG Rui(College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)
出处 《徐州工程学院学报(自然科学版)》 CAS 2020年第4期75-80,共6页 Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
基金 冶金工业过程系统科学湖北省重点实验室项目(Y201902)。
关键词 出行模式识别 GPS轨迹数据 卷积神经网络 门控循环单元 travel pattern recognition GPS trajectory data convolutional neural network gate recurrent unit
  • 相关文献

参考文献6

二级参考文献17

共引文献46

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部