摘要
We report the activation of anticancer effector functions of T cells through nanoparticle-induced lipid metabolic reprogramming.Fenofibrate was encapsulated in amphiphilic polygamma glutamic acid-based nanoparticles(F/ANs),and the surfaces of F/ANs were modified with an anti-CD3e f(ab′)2 fragment,yielding aCD3/F/ANs.An in vitro study reveals enhanced delivery of aCD3/F/ANs to T cells compared with plain F/ANs.aCD3/F/AN-treated T cells exhibited clear mitochondrial cristae,a higher membrane potential,and a greater mitochondrial oxygen consumption rate under glucose-deficient conditions compared with T cells treated with other nanoparticle preparations.Peroxisome proliferatoractivated receptor-αand downstream fatty acid metabolismrelated genes are expressed to a greater extent in aCD3/F/AN-treated T cells.Activation of fatty acid metabolism by aCD3/F/ANs supports the proliferation of T cells in a glucose-deficient environment mimicking the tumor microenvironment.Real-time video recordings show that aCD3/F/AN-treated T cells exerted an effector killing effect against B16F10 melanoma cells.In vivo administration of aCD3/F/ANs can increase infiltration of T cells into tumor tissues.The treatment of tumor-bearing mice with aCD3/F/ANs enhances production of various cytokines in tumor tissues and prevented tumor growth.Our findings suggest the potential of nanotechnology-enabled reprogramming of lipid metabolism in T cells as a new modality of immunometabolic therapy.
基金
supported by grants from the Ministry of Science and ICT,Republic of Korea(NRF-2018R1A2A1A05019203,NRF-2018R1A5A2024425)
the Korean Health Technology R&D Project(No.HI15C2842,HI18C2177,HI19C0664),Ministry of Health&Welfare,Republic of Korea.