摘要
针对脑卒中患者的神经功能缺损程度预测问题,提出活动轮廓模型和影像组学的方法。首先提出基于模糊速度函数的活动轮廓模型方法对梗死病灶区分割。然后提取形态学、一阶统计和纹理特征,接着用LASSO方法来特征选择。最后采用距离加权KNN方法构建分类预测模型。结果表明,提出的分割算法获得的结果接近金标准,分类算法有较好的预测性能。
A method of active contour model and radiomics is proposed to predict the degree of neurologic impairment of stroke patients.An active contour model based on fuzzy velocity function is proposed to segment infarct area.The morphology,first⁃order statistics and textural features are extracted,and then the least absolute shrinkage and selection operator(LASSO)method is used for the feature selection.The distance⁃weighted k nearest neighbor(KNN)algorithm is used to construct the classification prediction model.The results show that the result obtained by the proposed segmentation algorithm is close to the gold standard,and the classification algorithm had better predictive performance.
作者
李昌林
李智
冯宝
陈业航
刘壮盛
张绍荣
罗学毛
龙晚生
LI Changlin;LI Zhi;FENG Bao;CHEN Yehang;LIU Zhuangsheng;ZHANG Shaorong;LUO Xuemao;LONG Wansheng(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China;School of Electronic Information and Automation,Guilin University of Aerospace Technology,Guilin 541004,China;Department of Radiology,Affiliated Jiangmen Hospital of Sun Yat-sen University,Jiangmen 529000,China)
出处
《现代电子技术》
2021年第2期169-173,共5页
Modern Electronics Technique
基金
国家自然科学基金地区科学基金资助项目(81960324)
广西壮族自治区自然科学基金资助项目(2016GXNSFBA380160)
广西壮族自治区千名中青年骨干教师培育计划项目(2018GXQGFB160)。
关键词
脑卒中
图像预测
活动轮廓模型
影像组学
图像分割
分类预测建模
stroke
image prediction
active contour model
radiomics
image segmentation
classification prediction modeling