摘要
考虑一类半线性椭圆问题的非精确自适应有限元方法.该算法在初始网格需要精确求解,而在其余网格只需要对上一步的近似解进行一次牛顿更新.利用有限元方法的精确解和非精确解之间的超逼近性质,给出该方法的先验和后验误差估计,最后通过具体算例来验证该理论的正确性和该方法的有效性.
A type of inexact adaptive finite element method for semilinear elliptic problems is considered.The algorithm needs an accurate solution on the coarsest level,and the remaining levels involve only single Newton updates to the previous approximate solution.By using the super approximation property between the exact and inexact solutions of finite element method,the priori and posteriori error estimates of the proposed method are given,and the numerical experiments are provided to illustrate the theory and the algorithm.
作者
张庆敏
郭利明
ZHANG Qingmin;GUO Liming(College of Tourism,Xinyang Normal University,Xinyang 464000,China;College of Mathematics and Statistics,Xinyang Normal University,Xinyang 464000,China)
出处
《信阳师范学院学报(自然科学版)》
CAS
北大核心
2021年第1期11-15,144,共6页
Journal of Xinyang Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11601466)
信阳师范学院“南湖学者奖励计划”青年项目
信阳师范学院博士科研启动基金(15021)
信阳师范学院青年基金项目(2019-QN-028)。
关键词
非精确
自适应有限元
先验误差估计
后验误差估计
半线性
inexact
adaptive finite element method
priori error estimates
posteriori error estimates
semilinear