期刊文献+

基于改进Faster-RCNN的自然场景人脸检测 被引量:16

Face Detection in Natural Scene Based on Improved Faster-RCNN
下载PDF
导出
摘要 为实现对自然场景下小尺度人脸的准确检测,提出一种改进的Faster-RCNN模型。采用ResNet-50提取卷积特征,对不同卷积层的特征图进行多尺度融合,同时将区域建议网络产生的锚框由最初的9个改为15个,以更好地适应小尺度人脸检测场景。在此基础上,利用在线难例挖掘算法优化训练过程,采用软非极大值抑制方法解决漏检重叠人脸的问题,并在训练阶段通过多尺度训练提高模型的泛化能力。实验结果表明,该模型在Wider Face数据集上平均精度为89.0%,较原Faster-RCNN模型提升3.5%,在FDDB数据集上检出率也高达95.6%。 To realize accurate detection of small-scale faces in natural scene,this paper constructs an improved Faster-RCNN model.The model uses ResNet-50 to extract convolution features,and performs multi-scale fusion for feature maps of different convolutional layers.At the same time,the number of Anchors generated by the Regional Proposal Network(RPN)has been changed from 9 to 15 to better adapt to the small-scale face detection scenes.On this basis,the Online Hard Example Mining(OHEM)algorithm is used to optimize the training process.Soft-Non-Maximum Suppression(Soft-NMS)method is used to reduce the missed detection of overlapping faces,and in the training phase the multiscale training method is adopted to improve the generalization ability of the model.Experimental results show that the average precision of the proposed model is 89.0%on the Wider Face dataset,which is 3.5%higher than that of the original Fast-RCNN model.The relevance ratio of the proposed model reaches 95.6%on the FDDB dataset.
作者 李祥兵 陈炼 LI Xiangbing;CHEN Lian(College of Information Engineering,Nanchang University,Nanchang 330000,China)
出处 《计算机工程》 CAS CSCD 北大核心 2021年第1期210-216,共7页 Computer Engineering
基金 国家自然科学基金(61862043)。
关键词 人脸检测 Faster-RCNN模型 多尺度融合 在线难例挖掘 软非极大值抑制 face detection Faster-RCNN model multi-scale fusion Online Hard Example Mining(OHEM) Soft-Non-Maximum Suppression(Soft-NMS)
  • 相关文献

参考文献4

二级参考文献93

  • 1Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 2Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 3Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 5Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 6Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 7Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 8Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 9Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].
  • 10Zhai CX,Velivelli A,Yu B.A cross-collection mixture model for comparative text mining.In:Proc.of the 10th ACM SIGKDD Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM,2004.743-748.[doi:10.1145/1014052.1014150].

共引文献547

同被引文献142

引证文献16

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部