期刊文献+

改进的PSO高维特征选择算法 被引量:1

下载PDF
导出
摘要 在高维样本进行特征选择时,所得特征子集结果容易出现不稳定的状况。针对这一情况,文章提出了一种特征选择算法。使用PSO算法对特征进行选择,将隶属度函数加入稳定性评判准则中,形成多目标评价准则。为了避免粒子陷入局部最优化,使用突变策略对粒子进行了扰动,相较于传统方法,所得结果在特征子集稳定性方面平均提升了9.8%。
作者 江川
出处 《信息通信》 2020年第11期75-77,共3页 Information & Communications
  • 相关文献

参考文献2

二级参考文献11

  • 1张丽新,王家钦,赵雁南,杨泽红.机器学习中的特征选择[J].计算机科学,2004,31(11):180-184. 被引量:18
  • 2FAN J Q, LV J C. A selective overview of variable selection in high dimensional feature space[J]. Statistical Sinica, 2010 (10) : 101-148.
  • 3LIU H, YU L. Toward integrating feature selection algorithms for classification and clustering[J]. IEEE Transaction on Knowledge and Data Engineering, 2005, 17(3):1-12.
  • 4ZHAO Z. Spectral feature selection for mining ultrahigh dimensional data~. Arizona State University PhD Dissertation, 2010.
  • 5GUYON I, ELISSEEFF A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003,3(3) : 1157-1182.
  • 6LI Y, LU B L. Feature selection based on loss margin of nearest neighbor classification [J]. Pattern Recognition, 2009,42:1914-1921.
  • 7TAKEUCHI I, SUGIYAMA M. Target neighbor consistent feature weighting for nearest neighbor classification [C]. Conference on Advances in Neural Information Processing Systems(NIPS), 2011 : 1-9.
  • 8GUYON I, WESTON J, BARNHILT S, et aL Gene selection for cancer classification using support vector machine s Ill. Machine Learning, 2002,46:389-422.
  • 9SAEYS Y, ABEL T, PEER Y V. Robust feature selection using ensemble feature selection techniques[C]. Proceeding of the European Conference. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), Lecture Notes on Artificial Intelligence, 2008,5212:313-325.
  • 10YU L, HAN Y, BERENS M E. Stable gene selection from microarray data via sample weighting[J]. IEEE/ACM Transactions on Computational Biology and Bioinfannatics, 2012,9 (1): 262-272.

共引文献39

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部