期刊文献+

La掺杂ZnO的电子结构和光学性质的第一性原理 被引量:3

The First Principles of the Electronic Structure and Optical Property of La-doped ZnO
下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理平面波超软赝势方法,构建Zn1-xLaxO(x=0,0.0625,0.125)3种超胞模型。结构优化后,对La掺杂前后体系的态密度、布居值和光学性质进行计算分析。结果表明,随着La掺杂量的增加,掺杂体系的体积增加,形成能减少,共价性降低,体系稳定性增强。与未掺杂ZnO相比,La掺杂后引起可见光区的吸收边发生蓝移。体系的介电函数虚部和光吸收系数在低能区出现新的峰值。在高能区的吸收峰出现红移且峰值强度减弱。能量损失峰向低能方向移动,掺杂体系的能量损失明显减少。 Three supercell models of Zn1-xLaxO(x=0,0.0625,and 0.125)were constructed using the first-principle plane-wave ultrasoft pseudopotential method in density functional theory.After structural optimization,the density of states,Mulliken bond population,and optical properties of the system before and after La doping were calculated and analyzed.The results show that with the increase of La-doping amount,the volume of the doping system increased,the formation energy decreased,the covalent property weakened,and the stability of the system was enhanced.Compared with undoped ZnO,the absorption edge of the visible region had blue-shift after La-doping.The imaginary part of the dielectric function and the optical absorption coefficient showed a new peak in the low-energy region.The absorption peak in the high-energy region appearred a red shift and the peak intensity decreased.The energy loss peak moved toward the low-energy direction,and the energy loss of the doping system was significantly reduced.
作者 张蕾 王海芳 刘晓庆 安宁 王星星 ZHANG Lei;WANG Hai-fang;LIU Xiao-qing;AN Ning;WANG Xing-xing(School of Environment and Safety Engineering,North University of China,Taiyuan 030051,China)
出处 《科学技术与工程》 北大核心 2020年第35期14397-14401,共5页 Science Technology and Engineering
基金 国家自然科学基金(21806147) 山西省自然科学基金(201801D121268)。
关键词 La掺杂ZnO 第一性原理 电子结构 光学特性 La-doped ZnO first-principles electronic structures optical properties
  • 相关文献

参考文献3

二级参考文献29

  • 1党宏丽,王崇愚,于涛.γ-TiAl中Nb和Mo合金化效应的第一性原理研究[J].物理学报,2007,56(5):2838-2844. 被引量:25
  • 2段满益,徐明,周海平,沈益斌,陈青云,丁迎春,祝文军.过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究[J].物理学报,2007,56(9):5359-5365. 被引量:59
  • 3Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J, Morkoc H 2005 J. Appl. Phys. 98 041301.
  • 4Law M, Greene L E, Johnson J C, Saykally R, Yang P D 2005 Nat. Mater. 4455.
  • 5Wang Z L 2004 J. Phys.: Condens. Matter 14 R829.
  • 6Makino T, Chia C H, Tuan N T, Sun H D, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H 2000 Appl. Phys. Lett. 77 975.
  • 7Wang Y S, Thomas P J, O'Brien P 2006 J. Phys. Chem. B 110 21412.
  • 8Chen Y W, Liu Y C, Lu S X, Xu C S, Shao C L, Wang C, Zhang J Y, Lu Y M, Shen D Z, Fan X W 2005 J. Chem. Phys. 123 134701.
  • 9刘小村,季燕菊,赵俊卿,刘立强,孙兆鹏,董和磊.2010,物理学报,594925.
  • 10Singh A V, Mehra R M, Buthrath N, Wakahara A, Yoshida A 2001 J. Appl. Phys. 90 5661.

共引文献11

同被引文献31

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部