期刊文献+

面向序贯决策中异常情景下交互问题处理方法

Sequential decision-making-oriented interaction problem processing method for perturbation context
下载PDF
导出
摘要 针对目前在环境智能方面的序贯决策研究成果主要集中于不确定环境下的多智能体(Agent)交互决策问题,而未涉及到Agent在异常情景下对于该问题的解决思路,提出一种异常情景中Agent交互决策机制。首先基于改进的情景本体对情景中Agent所观察的实体进行“时—空”状态的获取和计算;其次,结合元认知环结构的语义推理算法对异常情景进行检测和评估,并反馈于Agent,最终做出符合当前情景下用户需求的动作或反应。经过在智能家居环境中的实验验证,在原有几种具有代表性的机器学习处理方法基础上,所提方法在其决策精确性上平均提高10%以上,响应时间则增加5%左右,且实现了在应用领域上的拓展,增强了实用性。 The current researches of sequential decision-making on ambient intelligence mainly are focused on the problem of Agents interaction decision-making over uncertain context,and solution for perturbation context is not involved.For this problem,the Agent interactive decision-making mechanism was proposed.The entity-spatio-temporal contexts based on the modified context ontology was acquired and calculated,and then the semantic-based metacognitive loop was used to detect and evaluate perturbation context so as to feedback to user-serving Agent.Ultimately,experiments in a smart home environment showed that the proposed method improved the accuracy of decision-making by more than 10%on the basis of several representative machine learning processing methods,while the response time increased by less than 5%,which achieved the expansion in the application field and enhanced the practicability.
作者 安敬民 李冠宇 张冬青 蒋伟 AN Jingmin;LI Guanyu;ZHANG Dongqing;JIANG Wei(Faculty of Computer and Software,Dalian Neusoft University of Information,Dalian 116023,China;Network Information Center,Dalian Maritime University,Dalian 116026,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2020年第12期3274-3282,共9页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61371090,61602075) 辽宁省自然科学基金资助项目(20180550940)。
关键词 智能体 序贯决策 环境智能 异常情景 情景本体 “时—空”状态 元认知环 Agent sequential decision-making ambient intelligence perturbation context spatio-temporal context metacognitive loop
  • 相关文献

参考文献10

二级参考文献108

  • 1钟伟才,刘静,刘芳焦,李成.组合优化多智能体进化算法[J].计算机学报,2004,27(10):1341-1353. 被引量:34
  • 2范波,潘泉,张洪才.基于Markov对策的多智能体协调方法及其在Robot Soccer中的应用[J].机器人,2005,27(1):46-51. 被引量:5
  • 3Mitola J.Cognitive radio for flexible mobile multimedia communications[C]//Proc.of 1999 IEEE International Workshop on Mobile Multimedia Communications.San Diego,CA,USA:[s.n.],1999.
  • 4McHenry M.Spectrum Occupancy Measurements[EB/OL].(2005-08).http://www.sharedspectrum.com/?section=sf_summary,2005.
  • 5Cabric D,Mishra S M,Brodersen R W.Implementation issues in spectrum sensing for cognitive radio[C]//Proc.38th Asilomar Conference on Signals,Systems and Computers.California University:[s.n.],2004:772-776.
  • 6Zhao Q,Tong L,Swami A,et al.Chen Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks:A POMDP framework[J].Journal of Selected Areas in Communications,2007,25(3):589-600.
  • 7Pynadath D V,Tambe M.The communicative multiagent team decision problem:Analyzing teamwork theories and models[J].Journal of Artificial Intelligence Research,2002,16(1):389-423.
  • 8Berustein D S,Givan R,Immerman N,et al.The Complexity of Decentralized Control of Markov Decision Process[J].Mathematics of Operations Research,2002,27(4):819-840.
  • 9Aberdeen D,Baxter J.Policy-Gradient Algorithms for Partially Observable Markov Decision Process[D].Australia:Australian National University,2003.
  • 10Jaakkola T,Singh S P,Jordan M I.Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems[J].Advances in Neural Information Processing Systems,1995,7:345-352.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部