期刊文献+

基于遗传算法的阵列天线波束能量定量控制技术 被引量:4

Quantitative control technique of beam energy for array antennas based on genetic algorithm
下载PDF
导出
摘要 提出发射天线(如无线局域网天线、基站天线等)辐射强度随用户信号强度的变化而实时调整的技术.该技术基于遗传算法,将阵列天线波束能量定量控制问题转化为一个带有约束条件的极值问题.在算法的适应度函数设计中,通过自适应罚函数将发射阵列天线和接收天线间的能量传输效率与接收天线信号强度构成一个简单的极值函数,得到阵列天线的最优激励分布.高频电磁结构仿真软件(HFSS)的验证结果表明:阵列天线辐射的信号强度在接收天线处能达预期值.可见,该技术能实现对阵列天线波束能量的定量控制. The technique that the radiation intensity of transmitting antennas(WIFI antennas,base station antennas,etc.)could be adjusted in real time with the change of user’s signal intensity was proposed.Based on genetic algorithm(GA),the problem of beam energy quantitative control for array antennas was transformed into an extreme problem with constraints.In the design of fitness function of GA,an adaptive penalty function was designed to combine the power transmission efficiency between the transmitting array antennas and receiving antennas with the signal intensity of receiving antennas to construct a simple extreme function,and the optimal excitation distributions of the transmitting array antennas were obtained.The verification results in High Frequency Structure Simulator(HFSS)showed that the signal intensity radiated by the transmitting array antennas could reach the expected value at receiving antennas.It could be seen that this technique could achieve quantitative control of beam energy for array antennas.
作者 王友保 王英植 张宥诚 WANG Youbao;WANG Yingzhi;ZHANG Youcheng(Research Center of Applied Electromagnetics, Nanjing University of Information Science & Technology, Nanjing 210044, China)
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2021年第1期43-52,共10页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(61673222)。
关键词 阵列天线 遗传算法 定量控制 自适应罚函数 array antenna genetic algorithm quantitative control adaptive penalty function
  • 相关文献

参考文献8

二级参考文献132

  • 1钟会林,吴福根,姚立宁.遗传算法在二维声子晶体带隙优化中的应用[J].物理学报,2006,55(1):275-280. 被引量:21
  • 2张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139. 被引量:93
  • 3Coello C A C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-12): 1245-1287.
  • 4Homaifar A, Qi C X, Lai S H. Constrained optimization via genetic algorithms[J]. Simulation, 1994, 62(4): 242-254.
  • 5Joines J A, Houck C R. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's[A]. Proceedings of the First IEEE Conference on Evolutionary Computation[C]. Piscataway, N J, USA: IEEE, 1994. 579-584
  • 6Ben Hadj-Alouane A, Bean J C. A genetic algorithm for the multiple-choice integer program[J]. Operations Research, 1997, 45(1): 92-101.
  • 7Rasheed K. An adaptive penalty approach for constrained genetic algorithm optimization[A]. Proceedings of the 3rd Annual Genetic Programming Conference[C]. San Francisco, CA, USA: Morgan Kaufmann, 1998. 584-590.
  • 8Runarsson T P, Yao X. Stochastic ranking for constrained evo lutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294.
  • 9Farmani R, Wright J A. Self-adaptive fitness formulation for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(5): 445-455.
  • 10Tessema B, Yen G G. A self adaptive penalty function based algorithm for constrained optimization[A]. Proceedings of the IEEE Congress on Evolutionary Computation[C]. Piscataway, NJ, USA: IEEE, 2006. 246-253.

共引文献131

同被引文献28

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部