期刊文献+

Multi-Objective Optimization for Structure Crashworthiness Based on Kriging Surrogate Model and Simulated Annealing Algorithm

原文传递
导出
摘要 Multi-objective optimization of crashworthiness in automobile front-end structure was performed,and finite element model(FEM)was validated by experimental results to ensure that FEM can predict the response value with sufficient accuracy.Seven design variables and four crashworthiness indicators were defined.Through orthogonal design method,18 FEMs were established,and the response values of crashworthiness indicators were extracted.By using the variable-response specimen matrix,Kriging surrogate model(KSM)was constructed to replace FEM to refect the function correlation between variables and responses.The accuracy of KSM was also validated.Finally,the simulated annealing optimization algorithm was implemented in KSM to seek optimal and reliable solutions.Based on the optimal results and comparison analysis,the 9096-th iteration point was the optimal solution.Although the intrusion of firewall and the mass of optimal structure increased slightly,the vehicle acceleration of the optimal solution decreased by 6.9%,which fectively reduced the risk of occupant injury.
作者 SUN Xilong WANG Dengfeng LI Ruheng ZHANG Bin 孙喜龙;王登峰;李汝恒;张斌(School of Engineering,Dali University,Dali 671003,Yunnan,China;Andi Sales Division,FAW-VW Automotive Co.,Ltd.,Changchun 130011,China;State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130025,China;Logistics Group,Jilin University,Changchun 130025,China)
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第6期727-738,共12页 上海交通大学学报(英文版)
  • 相关文献

参考文献5

二级参考文献26

  • 1马清亮,胡昌华.多目标进化算法及其在控制领域中的应用综述[J].控制与决策,2006,21(5):481-486. 被引量:23
  • 2吴献东,金晓明,徐志成,王树青.微粒群算法在模拟移动床色谱分离过程优化中的应用[J].化工自动化及仪表,2006,33(4):5-9. 被引量:5
  • 3TSAI S J,SUN T Y,LIU Chan-cheng,et al.An improved multi-objective particle swarm optimizer for multi-objective problems[J].Expert Systems with Applications,2010,37(8):5872-5886.
  • 4KUNDU P K,ZHANG yan,RAY A K.Multi-objective optimization of simulated countercurrent moving bed chromatographic reactor for oxidative coupling of methane[J].Chemical Engineering Science,2009,64(19):4137-4149.
  • 5KENNEDY J,EBERHART B C.Particle swarm optimization[C] //Proc of IEEE International Conference on Neural Networks.1995:1942-1948.
  • 6COELLO C A,PULIDO G T,LECHUCA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):256-279.
  • 7COELLO C A,LECHUGA M S.MOPSO:a proposal for multiple objective particle swarm optimization[C] //Proc of IEEE Congress on Evolutionary Computation.Piscataway:IEEE Press,2002:1051-1056.
  • 8SHI Yu-hui,EBERHART R C.A modified particle swarm optimizer[C] //Proc of IEEE International Conference on Evolutionary Computation.Piscataway:IEEE Press,1998:69-73.
  • 9EBERHART R,KENNEDY J.A new optimizer using particle swarm theory[C] //Proc of the 6th International Symposium on Micro Machine and Human Science.1995:39-43.
  • 10JO H H,LEE S K,KO D C,et al.A study on the optimal tool shape design in a hot forming process[J].Journal of Materials Processing Technology,2001,111 (1-3):127-131,.

共引文献218

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部