期刊文献+

Reducing Energy Loss and Morphology Optimization Manipulated by Molecular Geometry Engineering for Hetero-junction Organic Solar Cells 被引量:5

原文传递
导出
摘要 of main observation and conclusion Molecular geometry engineering is an efective strategy to control the micromorphology and molecularenergy level in organic photovoltaics(OPVs).Two novel copolymers based on alkysilyl-and chloride-functionalied benzodithiophene(BDT)were designed and synthesized for wide bandgap copolymer donor materials in OPVs.It was found that the two copolymers exhited distinctly different proper-ties in active layer when blended with fulerene-fre acceptor T-4.The chloride-functionalited copolymer PBDTCI-TZ2 with deeper molecular energy leveland better coplanar structure induced more ordered aggregation in blend flm.Thus,the device based on PBDTC-TZ exhibits better energy alinmentwith IT-4F and smallr radiative recombination.furthermore,the non-radiative recombination of PBDTCI-TZ.T-4F based device is about 45 mV lowerthan the PBDTS-TZ/T-4F based device,contributing to a lower enery loss(Ein,and a higher open-cicut voltage(Vc).As a resut,the devices based onthe blend of PBDTC-TZ2.IT-4F exhibit a high power conversion efficiency(PCE)of up to 12.2%with a high Vvoe of 0.837 Vv,higher than that of PBDTSi-TZ:IT-4F,of which the PCE is 11.2%with a Voc of 0.781V.
出处 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2020年第12期1553-1559,共7页 中国化学(英文版)
基金 L.C.thanks for the support from the National Natural Science Foundation of China(NSFC)(51973087,51673092,and 21762029) X.L.thanks for the support from the National Natural ScienceFoundation of China(NSFC)(51973032,and 21905043) Y.C.thanks for support from National Natural Science Foundation ofChina(51833004).G.X.thanks the China Scholarship Council forsupporting.
  • 相关文献

参考文献8

二级参考文献32

  • 1Bai, C., Zhang, X., Dai, J. and Wang, J.J., Coat. Technol. Res., 2008, 5:251.
  • 2Zhang, Y., Chien, S.C., Chen, K.S., Yip, H.L., Sun, Y., Davies, J.A., Chen, F.C. and Jen, A.K.Y., Chem. Commun., 2011, 47:11026.
  • 3Henssler, J.T., Zhang, X. and Matzger, A.J.J., J. Org. Chem., 2009, 74:9112.
  • 4Brabec, C.J., Heeney, M., McCulloch, I. and Nelson, J., Chem. Soc. Rev., 2011, 40:1185.
  • 5Slota, J.E., He, X. and Huck, W.T.S., Nano. Today, 2010, 5:231.
  • 6Kim, J.S., Lee, Y., Lee, J.H., Park, J.H., Kim, J.K. and Cho, K., Adv. Mater., 2010, 22; 1355.
  • 7Lv, M., Lei, M., Zhu, J., Hirai, T. and Chen, X., ACS Appl. Mater. Interfaces, 2014, 6:5844.
  • 8Li, Y., Sonar, P., Singh, S.P., Soh, M.S., van Meurs, M. and Tan, J., J. Am. Chem. Soc., 2011, 133:2198.
  • 9Zhang, M., Tsao, H.N., Pisula, W., Yang, C., Mishra, A.K. and Mtlllen, K., J. Am. Chem. Soc., 2007, 129:3472.
  • 10Chen, T.A., Wu, X. and Rieke, R.D., J. Am. Chem. Soc., 1995, 117:233.

共引文献11

同被引文献24

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部