期刊文献+

联合ACF与YOLOv3的目标识别方法研究 被引量:2

Research on Target Recognition Method Based on ACF and YOLOv3
下载PDF
导出
摘要 为提升YOLOv3算法对小目标的检测性能,引入基于聚合信道特征的区域提案方法,提取潜在区域送至YOLOv3网络进行检测;以soft-NMS算法改进NMS算法,减少检测框误删以及目标漏检的几率,提升了模型的检测精确率。实验结果表明,相比于传统YOLOv3算法,研究改进的YOLOv3算法在弹库人员检测方面的性能更优。 In order to get a better performance of YOLOv3 algorithm for small targets,this paper used a region proposal method based on the aggregated channel feature(ACF),extracted potential areas and sends them to the YOLOv3 network for detection.As a result,the soft-NMS algorithm improved the NMS algorithm,reduced the probability of false deletion of the bounding box and the missed detection of the target,and increased the detection accuracy of the model.Experimental results show that the improved YOLOv3 algorithm has better performance in the detection of pedestrian in missile warehouse compared with the traditional YOLOv3 algorithm.
作者 何伟鑫 邓建球 逯程 丛林虎 HE Weixin;DENG Jianqiu;LU Cheng;CONG Linhu(Shore Defense College, Naval Aviation University Shandong, Yantai 264001, China)
出处 《兵器装备工程学报》 CAS 北大核心 2020年第11期147-153,共7页 Journal of Ordnance Equipment Engineering
基金 国家自然科学基金项目(51605487)。
关键词 目标检测 聚合信道特征 非极大值抑制 弹库 target detection ACF NMS missile warehouse
  • 相关文献

参考文献2

二级参考文献13

共引文献4

同被引文献15

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部