期刊文献+

基于航拍视频的交叉口车流量统计方法研究 被引量:1

Research on Statistical Method of Traffic Flow at Intersection Based on Aerial Video
下载PDF
导出
摘要 针对现有的智能车流量统计方法只局限于单一方向路段检测的问题,采用自适应混合高斯模型和数学形态学运算来分离航拍视频的背景和前景,提出一种适用于交叉口复杂场景的改进的组合虚拟检测线方法,按照位置坐标分别在进口道和出口道位置设置检测线,检测线两两组合成对儿,并用投影法确定统计阈值关系,然后统计交叉口四个方向的车辆不同转向的交通流量。以唐山市学院路与长宁道交叉口和建设路与南新道交叉口的航拍视频为例,采用所提出方法统计交叉口的车流量,最后得到的误检率低至4.67%和4.41%,证明本文方法的具有良好的可行性。 Aiming at the problem that the existing methods of intelligent traffic flow statistics are limited to the de-tection of single-direction road section,adaptive mixture Gaussian model and mathematical morphology operation were used to separate background and foreground of aerial video,and an improved combined virtual detection line method was proposed in this paper,which is suitable for the complex conditions of intersections.According to the lo-cation coordinates,the detection lines were set at the entrance and exit lanes respectively,and the detection lines were paired in pairs.The statistical threshold relation was determined by the method of projection,then the traffic flow of vehicles in different directions of the intersection was counted.Taking the aerial videos of two intersections of Xueyuan Road and Changning Road,Jianshe Road and Nanxin Road in Tangshan City as an example,the traffic flow at intersections was calculated by using the method proposed in this paper,and the final false error detection rate is as low as 4.67%and 4.41%.The feasibility of this method is demonstrated.
作者 张敬 张林 王长伟 ZHANG Jing;ZHANG Lin;WANG Chang-wei(College of Civil and Architectural Engineering,North China University of Science and Technology,Tangshan Hebei 063210,China;College of Electrical Engineering,North China University of Science and Technology,Tangshan Hebei 063210,China)
出处 《计算机仿真》 北大核心 2020年第12期117-121,共5页 Computer Simulation
基金 国家自然科学基金项目(51378171) 华北理大学研究生创新项目(2018S27)。
关键词 组合虚拟检测线 自适应高斯混合模型 车流量统计 航拍视频 Combined virtual detection line Adaptive gaussian mixture model Traffic flow statistics Aerial video
  • 相关文献

参考文献4

二级参考文献29

  • 1王超,侯丽敏.一种新的高斯混合模型参数估计算法[J].上海大学学报(自然科学版),2005,11(5):475-480. 被引量:3
  • 2李香平,杨兆选.基于虚拟线的视频交通检测新算法[J].电子测量与仪器学报,2005,19(4):30-33. 被引量:6
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 4毛晓波,谢晓芳,张晓林.消除运动物体阴影的最大色度差分检测法[J].电子技术应用,2007,33(1):61-63. 被引量:9
  • 5胡以静,李政访,胡跃明.基于光流的运动分析理论及应用[J].计算机测量与控制,2007,15(2):219-221. 被引量:29
  • 6KORNPROBST P,DERICHE R,AUBERT G. Image sequence analysis via partial difference equations[ J]. Mathematical Imaging and Vision, 1999,11 ( 1 ) :5- 26.
  • 7ELGAMMAL A, DURAISWAMI R, HARWOOD D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ J]. Proceedings of the IEEE, 2002,90(7) :1151- 1163.
  • 8TANG Yi, LIU Wei-Ming, XIONG Liang. Improving robustness and accuracy in moving object detection using section-distribution background model[ C ]//Proc of the 4th International Conference on Natural Computation. 2008 : 167- 174.
  • 9STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recogniton. 1999:246-252.
  • 10STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking[J]. IEEE Trans on Pattern Analysis and Machine intelligence, 2000,22 ( 8 ) :747- 757.

共引文献124

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部