期刊文献+

基于自适应伽马变换的交通标志检测方法 被引量:8

Traffic Sign Detection Method Based on Adaptive Gamma Correction
下载PDF
导出
摘要 为提高自然场景下交通标志检测精度,提出一种基于自适应伽马变换的交通标志检测方法。方法利用颜色和形状等特征实现交通标志检测。针对传统交通标志检测方法中较少考虑自然场景图像亮度校正问题,首先提出了基于自适应伽马变换的颜色增强方法,然后采用最大稳定极值区域(MSER)算法提取颜色增强图中的交通标志感兴趣区域(ROI),最后基于方向梯度直方图(HOG)特征,利用级联支持向量机(SVM)对交通标志ROI进行分类判决。基于德国交通标志数据库(GTSDB)的检测实验获得了97.28%的检测率及10.35%误检率,结果表明,所提算法可有效提升交通标志检测的精度。 To improve the traffic sign detection accuracy in the natural environment,a traffic sign detection meth-od based on adaptive gamma correction algorithm is proposed in this paper,which detects the traffic signs via the fea-tures of the color and shape.Aiming at the shortcoming that traditional traffic sign detection methods are less consid-ering of luminance correction for natural scene image,we first designed an effective color enhancement method through adaptive gamma correction.Then,the region of interest(ROI)of traffic signs was extracted from color en-hancement images based on the maximally stable extremum regions(MSER)method.Finally,a cascade support vector machine(SVM)classification algorithm via the histogram of oriented gradient(HOG)feature extracted only in the MSER regions was applied to classify the MSER regions.Experimental results demonstrate the accuracy of the proposed approach on traffic sign detection,and demonstrate the effectiveness and robustness of the approach on traf-fic sign detection.Based on the German Traffic Sign Detection Benchmark Database(GTSDB),97.28%detection rate and 10.35%false detection rate are obtained.
作者 孙晓艳 唐圣金 郭君斌 于传强 SUN Xiao-yan;TANG Sheng-jin;GUO Jun-bin;YU Chuan-qiang(Department 302,Rocket Force University of Engineering,Xi'an Shanxi 710025,China;Department 201,Rocket Force University of Engineering,Xi'an Shanxi 710025,China)
出处 《计算机仿真》 北大核心 2020年第12期414-420,共7页 Computer Simulation
基金 国家自然科学基金青年项目(61703410) 国家自然科学基金面上项目(61873175,61873273)。
关键词 交通标志检测 伽马变换 颜色增强 最大稳定极值区域 方向梯度直方图 支持向量机 Traffic sign detection Gamma correction Color enhancement method Maximally stable extremum re-gions(MSER) Histogram of oriented gradient(HOG) Support vector machine(SVM)
  • 相关文献

参考文献9

二级参考文献86

  • 1邢军.基于Sobel算子数字图像的边缘检测[J].微机发展,2005,15(9):48-49. 被引量:57
  • 2黎群辉,张航.基于改进概率神经网络的交通标志图像识别方法[J].系统工程,2006,24(4):97-101. 被引量:14
  • 3朱双东,张懿,陆晓峰.三角形交通标志的智能检测方法[J].中国图象图形学报,2006,11(8):1127-1131. 被引量:33
  • 4初秀民,严新平,毛喆.道路标志自动分类方法[J].交通运输工程学报,2006,6(4):91-95. 被引量:11
  • 5HSU S H, HUANG C L. Road sign detection and recognition using matching pursuit method[J]. Image and Vision Computing, 2001, 19(3): 119-129.
  • 6ARMINGOL J M, ESCALERA A, HILARIO C, et al. Intelligent vehicle based on visual information[J]. Robotics and Autonomous Systems, 2007, 55(12): 904-916.
  • 7SOETEDJO A, YAMADA K. Fast and robust traffic sign detection systems[C]//IEEE. Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Waikoloa: IEEE, 2005: 1341-1346.
  • 8MOUTARDE F, BARGETON A, HERBIN A, et al. Ro bust on-vehicle real time visual detection of American and Eu ropean speed limit signs, with a modular traffic signs recogni tion system[C]//IEEE. Proceedings of the Intelligent Vehicles Symposium. Istanbu: IEEE, 2007: 1122-1126.
  • 9ESTABLE S, SCHICK J, STEIN F, et al. A real-time traffic sign recognition system[C]//IEEE. Proceedings of the Intelligent Vehicles Symposium. Paris: IEEE, 1994: 213-218.
  • 10冈萨雷斯.数字图像处理[M].第2版.阮秋琦,阮宇智,译.北京:电子工业出版社,2005.

共引文献77

同被引文献59

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部