期刊文献+

基于空间动态划分的差分隐私聚类算法 被引量:3

Differential Privacy Clustering Algorithm Based on Spatial Dynamic Partition
下载PDF
导出
摘要 差分隐私算法作为当前研究较多的隐私保护机制之一,有着广泛应用。目前有多种基于差分隐私保护的k均值聚类算法,应用场景不一,各有缺陷。以往的算法通过均等划分数据集,构造等宽直方图进行聚类,这会导致没有数据分布的区域也被无差别插入噪声,影响聚类性能。针对这一点,提出了一种新的差分隐私聚类算法DPQTk-means,先通过构建差分隐私四分树,用大小不一的自适应存储桶动态划分数据空间,充分表示数据集同时减少噪声插入,再进行k均值聚类,证明了其满足ε-差分隐私保护。实验结果表明,DPQTk-means算法与以往的差分隐私聚类算法相比具有更好的聚类可用性,且能够在隐私保护水平较高的同时保持稳定的聚类性能。 As one of the most popular privacy protection mechanisms,the differential privacy algorithm has been widely used.At present,there are a variety of k-means clustering algorithms based on differential privacy protection.The application scenarios are different and each has its own defects.There is an algorithm that divides the data set and constructs the equal-width histograms for clustering.This causes the areas without data to be inserted into noise without any difference,which affects clustering performance.To solve this problem,a new differential privacy clustering algorithm DPQTk-means is proposed.By constructing a differential privacy quad tree,the data space is dynamically divided by adaptive buckets of different sizes to fully represent the data set and reduce noise insertion,and then do k-means clustering.It proves that it satisfiesε-differential privacy protection.Experimental results show that the DPQTk-means algorithm has better cluster availability than the previous differential privacy clustering algorithms,and can maintain stable clustering performance while maintaining a high level of privacy protection.
作者 张可铧 成卫青 ZHANG Kehua;CHENG Weiqing(School of Computer,Nanjing University of Posts&Telecommunications,Nanjing 210023,China;Key Laboratory of Computer Network&Information Integration of Ministry of Education,Southeast University,Nanjing 211189,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第2期97-103,共7页 Computer Engineering and Applications
基金 国家自然科学基金(61170332) 计算机网络和信息集成教育部重点实验室资助项目(K93-9-2014-04B)。
关键词 差分隐私 四分树 动态划分 K均值 differential privacy quad tree dynamic partition k-means
  • 相关文献

参考文献6

二级参考文献37

  • 1Blum A,Dwork C,McSherry F,et al.Practical Privacy:The SuLQ Framework[C] //24th ACM SIGMOD International Conference on Management of Data / Principles of Database Systems,Baltimore (PODS 2005).Baltimore,Maryland,USA,June 2005.
  • 2Dwork C.Differential Privacy[C] //33rd International Colloquium on Automata,Languages and Programming,part Ⅱ (ICALP 2006).Venice,Italy,Springer Verlag,July 2006.
  • 3Dwork C.Differential Privacy:A Survey of Results[C] //Theory and Applications of Models of Computation(TAMC2008).Xi'an,China,Springer Verlag,April 2008.
  • 4Dwork C.The Differential Privacy Frontier[C] //6th Theory of Cryptography Conference (TCC 2009).San Francisco,CA,Springer Verlag,March 2009.
  • 5Dwork C.Differential Privacy in New Settings[C] //Symposium on Discrete Algorithms (SODA),Society for Industrial and Applied Mathematics.Austin,TX,January 2010.
  • 6Dwork C.A Firm Foundation for Private Data Analysis[J].Communications of the ACM,2011,54 (1):86-95.
  • 7Dwork C.The Promise of Differential Privacy.A Tutorial on Algorithmic Techniques[C] // 52nd Annual IEEE Symposium on Foundations of Computer Science.Palm Springs,CA,October 2011.
  • 8Agrawal R,Strikant R.Privacy-preserving data mining[C] //Proceedings of the 2000 ACM SIGMOD International Conference on Managementof Data.Dallas,Texas,May 2000:439-450.
  • 9Sweeney L.K-anonymity:A Model for Protecting Privacy[J].International Journal on Uncertainty[J].Fuzziness and Knowledge-based Systems,2002,10 (5):557-570.
  • 10Lindell Y,Pinkas B.Privacy preserving data mining[C] // Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology.Santa Barbara,California,August 2000:36-54.

共引文献239

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部