期刊文献+

大气环境对高压直流输电线的离子流场影响机理研究

Research of the Influence on the Ion Flow Field of Transmission Lines of HVDC by Atmospheric Environment
下载PDF
导出
摘要 文章研究了不同天气影响下的高压直流输电线产生的离子流密度和合成场强计算方法。建立了考虑天气条件的高压直流输电线路离子流场计算模型,计算了不同温湿度下输电线路地面离子流密度和合成场强,分析了离子流场的分布规律。结果表明:大气环境温湿度的变化会影响导线起晕电场强度和空间离子迁移率的变化;温度的增加提高了电晕放电强度和离子迁移率,使得地面离子流密度和合成场强增大;由于水分子的吸附特性,随着空气相对湿度的增大,在一定范围内会降低电晕的放电强度,导致入地离子流密度和合成场强降低;当湿度增加到一定程度后,空气中开始凝结出水滴并附着在线路表面,引起空间电场畸变,起晕场强开始减小,逐渐使入地离子流密度和合成场强增加。 The calculation method on the effect of different weathers were studied on the ion current density and ground total electric field strength of transmission lines of HVDC.The calculation model of the ion current field was established on HVDC transmission lines by different weather conditions,and the ground ion current density and total electric field strength were calculated under different temperatures and humidity.The results show that the change of the corona initiation electric field strength and spatial ion mobility were affected by different atmospheric temperatures and humidity.When the temperature rising,the corona discharge intensity and ion mobility will be enhanced,and the ground total field strength and ion current density will be increased.Due to the adsorption characteristics of water molecules,when the relative humidity rising,the discharge intensity of the corona will be reduced at a certain range,and results the reduction of the ground total field strength and ion current density.After to some degree,condensation will appear on the surface of the wire,which will distort the space electric field,gradually increase the ion current density and ground total electric field strength.
出处 《科学技术创新》 2021年第2期9-12,共4页 Scientific and Technological Innovation
基金 国网西藏电力有限公司科技项目(SGXZDK00PJJS2000082)。
关键词 电磁环境 离子流场 合成场强 离子流密度 Electromagnetic environment Ion current field Total electric field Ion current density
  • 相关文献

参考文献3

二级参考文献36

  • 1干喆渊,邬雄,张广洲,路遥,周文俊.±500 kV直流输电系统电磁环境调查研究[J].高电压技术,2006,32(9):146-148. 被引量:18
  • 2周沛洪,修木洪,谷定燮,戴敏,娄颖.±800kV直流系统过电压保护和绝缘配合研究[J].高电压技术,2006,32(12):125-132. 被引量:68
  • 3GB50065—2011中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.交流电气装置的接地设计规范[S].2011.
  • 4Takuma T, Ikcda T, Kawamoto T. Calculation of ion flow fields of HVDC transmission lines by the finite element method[J]. IEEE Trans- actions on Power Apparatus and Systems, 1981, 1(12): 4802-4810.
  • 5Maruvada P S, Janischewky W. Analysis of corona loss on DC trans- mission lines: II-bipolar lines[J]. IEEE Transactions on Power Apparatus and System, 1969, 88(10): 1476-1491.
  • 6Johnson G B, Zaffanella L E. Techniques for measurements of the electrical environment created by HVDC transmission lines[C]//Proceedings of the 4th International Symposium of HV Engineering. Athens, Greece: [s.n.], 1983: 1-5.
  • 7李伟,张波,何金良.多回直流输电线路的离子流场计算[J].高电压技术,2008,34(12):2719-2725.
  • 8Raether H. Electron avalanches and breakdown in gases[M]. London, England: Butterworths, 1964: 40-45.
  • 9Patterson P L. Mobilities of negative ions in SF6[J]. The Journal of Chemical Physics, 1970, 53(2): 696-704.
  • 10Misakian M. Generation and measurement of dc electric fields with space charge[J]. Journal of Applied Physics, 1981, 52(5): 3135-3144.

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部