期刊文献+

热堆制备低放射性233U的钍铀转换方法

Conversion Method of Th to U for Preparation of Low Radiation 233U in Thermal Reactor
下载PDF
导出
摘要 233 U比235 U具有更好的燃料特性,是具有潜在重要应用价值的核燃料,但直接使用钍铀或钍钚混合燃料在堆中辐照得到的233 U,含有大量的232 U及234 U,放射性较强,难以像235 U一样作为常规核燃料使用。基于低放射性233 U的制备需求,本文分析了232 Th-233 U转化中U同位素杂质232 U及234 U的产生途径,采用可有效减少232 U生成的热堆辐照思路,研究了热堆制备低放射性233 U的辐照工艺。利用MCNP程序对232 Th样品在西安脉冲堆堆内辐照过程进行建模,分析了辐照时间、冷却时间、多个“辐照-冷却”周期法辐照及中间产物230 Th对辐照产物的影响,给出了西安脉冲堆制备低放射性233 U辐照工艺。研究结果表明,本文制备的低放射性233 U产品中233 U的质量分数为10^-5量级,232 U、234 U与233 U的质量比分别小于10^-6和10^-3,符合低放射性233 U指标要求。 233 U has a better fission characteristic than 235 U,and it is a potentially important nuclear fuel.Based on the preparation requirement of low radiation 233 U irradiation process,the production path of isotope impurity of 232 U and 234 U in the conversion of 232 Th to 233 U is analyzed.The irradiation process of 232 Th samples on Xi’an Pulsed Reactor is modeled by using MCNP code.The effects of irradiation time,cooling time,the multiple“irradiation-cooling”cycles,and 230 Th on the irradiated products are analyzed.A low radiation 233 U irradiation process on Xi’an Pulsed Reactor is given.The results showed that the mass of low radiation 233 U is 10^-5,the mass ratios of 232 U,234 U to 233 U are below 10^-6 and 10^-3,respectively,while the product meets the low radiation 233 U standard.
作者 朱养妮 长孙永刚 郭和伟 王立鹏 张信一 ZHU Yang-ni;ZHANGSUN Yong-gang;GUO He-wei;WANG Li-peng;ZHANG Xin-yi(Northwest Institute of Nuclear Technology,Xi’an 710024,China;State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,Xi’an 710024,China)
出处 《现代应用物理》 2020年第4期36-42,共7页 Modern Applied Physics
关键词 低放射性233 U 热堆 钍铀转化 西安脉冲堆 辐照工艺 low radiation 233 U thermal reactor 232 Th-233 U conversion Xi’an Pulse Reactor irradiation process
  • 相关文献

参考文献3

二级参考文献26

  • 1Thorium fuel cycle - Potential benefits and challenges. IAEA-TECDOC-1450, 2005.
  • 2Jungmin Kang, Frank N. yon Hippel, U-232 and the Proliferation-Resistance of U-233 in Spent Fuel[J]. Science & Global Security, 2001, 9:1-32.
  • 3Takaaki Ohsawa, Masaharu Inoue. Analysis of neutron yields and energy spectra from spent molten-salt reactor fuel[J]. Ann Nucl Energy, 1994, 21(4): 207 -210.
  • 4Belle J, Berman R M. Thorium dioxide: properties and nuclear applications, DOE/NE-0060, 1984.
  • 5Saed Mirzadeh, Phillip Walsh. Numerical evaluation of the production of radionuclides in a nuclear reactor (Part I) [J]. Appl Radiat Isot, 1998, 49(4): 379-382.
  • 6Croft A G. A user's manual for the ORIGEN2 computer code. ORNL/TM-7175, 1980.
  • 7Dehart M D, Bowman S M. Reactor physics methods and analysis capabilities in SCALE[J]. Nuclear Technology, 2011, 174:196-213.
  • 8Croft A G, Bjerke M A, Morrison G W, et al. Revised uranium-plutonium cycle PWR and BWR models for the ORIGEN computer code. ORNL/TM-6051, 1978.
  • 9Zhang J H, Bao B R, Xia Y X, et al. The dependence of build-up 233U, 232U, 233pa and fission products from ThO2 irradiated in HFETR on integral thermal neutron fluxes and neutron spectra[J]. Journal of Radioanalytical and Nuclear Chemistry, Letters, 1987, 117(2): 121-127.
  • 10Horhoiany G, Moscalu D R, Olteanu G, et al. Development of SEU-43 fuel bundle for CANDU type reactors[J]. Ann Nucl Energy, 1998, 25(16): 1363-1372.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部