期刊文献+

基于深度学习的滴灌带滴孔质量检测方法研究

Research on detection for dripping irrigation pipe holes based on deep learning
下载PDF
导出
摘要 滴灌带在生产过程中需要对内镶的滴片进行打孔操作,滴孔的漏打或者打偏,在使用时会影响农作物的生长,目前还没有高效的在线滴孔质量检测的方法。文章对深度学习模型卷积神经网络和用于目标检测的YOLO算法进行了研究,提出了一种基于深度学习的滴孔质量快速检测算法。该方法首先采用YOLO算法对滴槽和滴孔定位,获取二者的坐标位置,然后获取二者的中心坐标差值,通过与预设值进行比较,判断滴孔是否合格。并将该算法应用于滴灌带生产线上进行实验分析,结果表明该方法在滴孔质量检测应用上达到了良好的效果。 In the production process of the dripping irrigation pipe,the dripping heads embeded in the pipes need to be punched holes.No holes or deflected holes can cause the deaths of cropper locally.At present,there is no effective method to detect the state of the holes online.A research on the deep learning model convolutional neural networks and YOLO algorithm for target detection is made in paper,and the paper proposes an online detection algorithm of holes based on deep learning.The algorithm first uses the YOLO network to locate the drip trough and the hole,and obtains both the coordinates of them.Then the difference between the two coordinates is calculated and compared with the predefined thresholds to judge whether the hole is qualified.Finally,the algorithm was applied to the production line of drip irrigation pipe for experimental analysis.The experiments shows good results and practicability of this method.
作者 姚利彬 罗英豪 郝存明 YAO Li-bin;LUO Ying-hao;HAO Cun-ming(Institute of Applied Mathematics,Hebei Academy of Sciences,Shijiazhuang Hebei 050081,China;Hebei Authentication Technology Engineering Research Center,Shijiazhuang Hebei 050081,China;Hebei Academy of Sciences,Shijiazhuang Hebei 050081,China)
出处 《河北省科学院学报》 CAS 2020年第4期49-53,共5页 Journal of The Hebei Academy of Sciences
关键词 滴灌带 滴孔检测 深度学习 卷积神经网络 YOLO Dripping irrigation pipe Holes detection Deep learning Convolution neural networks YOLO
  • 相关文献

参考文献6

二级参考文献60

  • 1安子林,甄莉.浅谈防止滴灌带灼伤的方法[J].内蒙古水利,2013(5):173-174. 被引量:1
  • 2张孟春,方东平.建筑工人不安全行为产生的认知原因和管理措施[J].土木工程学报,2012,45(S2):297-305. 被引量:86
  • 3冯广志.节水灌溉:节水灌溉体系和正确处理节水灌溉工作中的几个关系[M].北京:中国农业出版社,1998,7..
  • 4李世英.节水灌溉:我国节水灌溉设备综述[M].北京:中国农业出版社,1998,7..
  • 5李英能.对我国喷灌技术发展的若干问题探讨.全国喷灌科技情报网第十次学术交流会议[M].,1999,11..
  • 6BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 7BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 8HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 9BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 10LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.

共引文献2403

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部