期刊文献+

基于深度学习的目标橘子识别方法研究 被引量:4

Research on the method of identifying target orange with deep learning
下载PDF
导出
摘要 为了更好地解决自然条件下目标橘子的遮挡、重果问题,采用深度学习的方法对目标橘子进行识别,并用传统的目标识别算法与Faster-RCNN两种方法进行对比实验。根据大量的数据对比可知,传统的目标识别方法对自然光照敏感,对遮挡、重果的识别效果不佳,泛化能力及鲁棒性较差。而Faster-RCNN算法对光照及枝叶遮挡的识别更友好,更符合采橘机器人实际采摘的需要。深度学习方法有望在采橘机器人目标识别中得到更广泛的应用。 In order to better solve the problem that the target orange is covered by something or overlapped in natural condition,this paper uses the deep learning method to recognize the target orange,and makes the comparative experiment between the traditional target recognition algorithms and the Faster-RCNN method.According to a large number of data comparison,the traditional target recognition methods are sensitive to natural light,the recognition effect on covered or overlapped fruit is not so good,and have poor generalization ability and robustness.The Faster-RCNN algorithm is more suitable to recognize the light and branch covered fruit,which is more in line with the actual needs of orange picking robot.Deep learning methods are expected to be more widely used in the target identification of orange picking robot.
作者 任会 朱洪前 Ren Hui;Zhu Hongqian(Central South University of Forestry and Technology,Changsha,Hunan 410004,China)
出处 《计算机时代》 2021年第1期57-60,64,共5页 Computer Era
关键词 目标识别 传统算法 深度学习 采橘机器人 target identification traditional algorithm deep learning orange picking robot
  • 相关文献

参考文献5

二级参考文献90

共引文献89

同被引文献82

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部