期刊文献+

基于改进阈值与边缘梯度的亮场干细胞图像分割方法 被引量:9

Bright-field stem cell image segmentation based on improved threshold and edge gradient
下载PDF
导出
摘要 针对亮场干细胞图像中细胞粘连、形态各异,难以精确分割的问题,提出一种基于改进阈值与边缘梯度的亮场干细胞图像分割方法。首先,通过改进的阈值法对预处理后的图像实现细胞与背景粗分;其次,利用改进的Sobel算子检测细胞边缘梯度信息,结合连通域标记方法对粗分割图像做细化分割;最后,运用形态学方法进行优化处理。提出的方法能够有效去除细胞图像中的溶液杂质,消除相差显微镜拍摄所带来的光圈、伪影等影响,更准确地分割出细胞边缘轮廓。实验表明,所提方法分割精度达到95.48%,综合分割性能指标Fscore=94.61%,与传统的阈值分割等方法相比,具有更好的分割效果。 A method of bright-field stem cell image segmentation based on improved threshold and edge gradient is proposed,this method aims to solve the problems of cell adhesion,different shapes and difficulty in accurate segmentation in bright-field stem cell image.Firstly,the cell and background are roughly divided by the improved threshold method to preprocessed images.Secondly,the edge gradient information of cells is detected by the improved sobel operator,and the coarse segmented image is subdivided by the connected domain labeling method.Finally,morphological method is used to optimize the processing.The proposed method can effectively remove the solution impurities in the cell image,and eliminate the influence of aperture and artifacts caused by the phase contrast microscope,more accurately segment the cell edge contour.Experimental results show that the segmentation accuracy of this method reaches 95.48%,the comprehensive segmentation performance index Fscore=94.61%,compared with the traditional threshold segmentation methods etc.,the proposed algorithm has better segmentation results.
作者 伏金浩 王剑平 闻路红 洪欢欢 史振志 Fu Jinhao;Wang Jianping;Wen Luhong;Hong Huanhuan;Shi Zhenzhi(Faculty of Information Engineering&Automation,Kunming University of Science&Technology,Kunming 650500,China;The Research Institute of Advanced Technologies,Ningbo University,Ningbo 315211,China)
出处 《电子测量技术》 2020年第20期109-114,共6页 Electronic Measurement Technology
基金 国家重点研发计划(2017YFB0306405) 国家自然科学基金(61364008) 云南省重点研发计划(2018BA070)项目资助。
关键词 亮场干细胞分割 改进的阈值法 边缘梯度 形态学处理 bright-field stem cell segmentation improved threshold algorithm edge gradient morphological processing
  • 相关文献

参考文献7

二级参考文献111

共引文献121

同被引文献88

引证文献9

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部