期刊文献+

多脉冲阵列接收信号波束域测向分析

Beam space direction finding analysis of multi pulse array received signal
下载PDF
导出
摘要 传统的测向方法是通过对阵元域数据进行处理从而得到目标角度,但是该数据维数较大计算复杂度较高。通过将波束形成和稀疏表示算法结合起来,可以将阵列接收数据转换到波束域,对波束域的稀疏MFOCUSS测向算法进行研究。通过仿真分析,单个目标情况下,与波束域MUSIC测向算法进行对比,波束域稀疏MFOCUSS测向算法较为稳定,而波束域MUSIC测向算法随波束个数的减少其旁瓣幅度逐渐升高,在波束个数由2个增多为4个时旁瓣幅度降低40dB。在两个目标角度较为接近之间相差1°时,波束域MUSIC测向算法分辨能力不高。在目标个数与波束个数相等的情况下,波束域MUSIC测向算法失效,而波束域稀疏MFOCUSS测向算法仍能准确测得目标真实角度。 The traditional direction finding method is to obtain the target angle by processing the data in the array domain,but the data dimension is large and the calculation complexity is higher.By combining beamforming and sparse representation algorithm,the received data of array can be transformed into beam space.The sparse MFOCUSS direction finding algorithm in beam space can be studied.Through simulation analysis,in the case of a single target,compared with the beam domain MUSIC direction finding algorithm,the beam domain sparse MFOCUSS direction finding algorithm is more stable,while the beam-domain MUSIC direction finding algorithm gradually increases the sidelobe amplitude as the number of beams decreases.When the number of beams increases from two to four,the sidelobe amplitude is reduced by 40dB.When the two target angles are close by 1°,the angular resolution capability of the beam-domain MUSIC direction finding algorithm is not high.When the number of targets is equal to the number of beams,the beam space MUSIC direction finding algorithm fails,while the beam space sparse MFOCUSS direction finding algorithm can still accurately measure the true angle of the target.
作者 林真真 薛霖霖 Lin Zhenzhen;Xue Linlin(Array and Information Processing Laboratory,College of Computer and Information,Hohai University,Nanjing 211100,China)
出处 《电子测量技术》 2020年第20期139-144,共6页 Electronic Measurement Technology
关键词 波束形成 MUSIC算法 稀疏处理 MFOCUSS算法 beamforming MUSIC algorithm sparse processing MFOCUSS algorithm
  • 相关文献

参考文献6

二级参考文献45

  • 1Mathews C P and Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays. IEEE Transactions on Signal Processing, 1994, 42(9): 2395-2407.
  • 2Davies D E N and Rudge A W. Ed. The Handbook of Antenna Design. London, UK, Peregrinus, 1983, Vol.2, Ch.12.
  • 3Lian Xiao-hua and Zhou Jian-jiang. 2-D DOA estimation for uniform circular arrays with PM. 7th International Symposium on Antennas, Propagation & EM Theory, Beijing, 2006: 1-4.
  • 4Belloni F and Koivunen V. Beamspace transform for UCA: Error analysis and bias reduction. IEEE Transactions on Signal Processing, 2006, 54(8): 3078-3089.
  • 5Belloni F, Richter A, and Koivunen V. Extension of root-MUSIC to non-ULA array configurations IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), France, 2006: 897-900.
  • 6Belloni F, Richter A, and Koivunen V. DoA estimation via manifold separation for arbitrary array structures. IEEE Transactions on Signal Processing, 2007, 55(10): 4800-4810.
  • 7Costa M, Richter A, Belloni F, and Koivunen V. Polynomial rooting-based direction finding for arbitrary array configurations 5th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM08) Germeny, 2008: 58-62.
  • 8Doron M A and Doron E. Wavefield modeling and array processing, Part I Spatial sampling. IEEE Transactions on Signal Processing, 1994, 42(10): 2549-2559.
  • 9Rubsamen M and Gershman A B. Performance analysis of root-music-based direction-of-arrival estimation for arbitrary non-uniform array, 5th IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM08), Germeny. 2008: 381-385.
  • 10Goossens R, Rogier H, and Werbrouck S. UCA root-MUSIC with sparse uniform circular arrays. IEEE Transactions on Signal Processing, 2008, 56(8): 4095-4099.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部