摘要
主要研究r正则多重置换码在广义的凯莱距离下的理论大小问题.由于计算两个多重置换码之间的距离十分复杂,引进了块置换距离来做距离嵌入.最后得到了关于r正则多重置换码在广义的凯莱距离下的上下界.
We address the problem of r regular multipermutation codes’size under the generalized Cayley distance.Because it is difficult to calculate the generalized Caylay distance,we introduce the block permutation distance for metric embedding.Lastly,we derive the upper bound and lower bound of r regular multipermutation codes under the generalized Cayley distance.
作者
张树亮
ZHANG Shu-liang(School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China)
出处
《数学的实践与认识》
北大核心
2020年第23期192-196,共5页
Mathematics in Practice and Theory
关键词
r正则多重置换码
广义的凯莱距离
块置换距离
regular multipermutation codes
generalized Caylay distance
block permutation distance