摘要
在gcd(a,b)=p,gcd(a,c)=1,gcd(b,c)=1(p为素数)的条件下研究不定方程Φ(abc)=2Φ(a)Φ(b)+6Φ(c)的可解性问题,利用初等方法求出了方程在p=1,2,3,5,7时所有解,共61组,且该方法具有一定普适性,可以推广到类似的方程.
The solvability of the Diophantine equation,under the condition of gcd(a,b)=p,gcd(a,c)=1,gcd(b,c)=1(p is prime number).All the solutions of the equation at p=1,2,3,5,7 are obtained by using the preliminary mathematical methods,which is 61 groups in total,and the method has certain universal applicability,which can be extended to similar equations.
作者
席小忠
XI Xiao-zhong(Institute of Mathematics and Computer Science,Yichun College,Yichun 336000,China)
出处
《数学的实践与认识》
北大核心
2020年第23期263-266,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金(11771382)。