期刊文献+

电纺纳米纤维取向对其特性的影响 被引量:4

Influence of electrospun nanofiber orientation on its properties
下载PDF
导出
摘要 传统静电纺丝技术制备的纳米纤维在收集装置中随机排列,取向度较低,性能较弱,限制了其应用。有序排列的取向纳米纤维已引起广泛关注。首先综述了采用静电纺丝制备取向纳米纤维的方法,从纳米纤维的导电性能、压电性能、热稳定性、力学性能和光学性能阐述了静电纺丝技术制备的纳米纤维取向对其特性产生的影响。接着,介绍了取向纳米纤维在组织工程、传感器和能源方面的应用。最后,对纳米纤维性能改善的原理进行了总结,并对其发展进行了展望。 The nanofibers prepared by traditional electrospinning technology are randomly arranged in the collection device with low degree of orientation and weak properties,which limits their application.The orderly arrangement of oriented nanofibers has attracted much attention.Firstly,the preparation methods of oriented nanofibers by electrostatic spinning are reviewed.Then,the effects of orientation of nanofibers prepared by electrostatic spinning on their properties are discussed from the aspects of conductivity,piezoelectric property,thermostability,mechanical property and optical property of nanofibers.Subsequently,the applications of oriented nanofibers in tissue engineering,sensors and energy sources are introduced.Finally,the principle of improving the properties of oriented nanofibers is summarized and its development is prospected.
作者 施成东 于淑艳 李从举 SHI Chengdong;YU Shuyan;LI Congju(School of Energy and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China;Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants,Beijing 100083,China)
出处 《精细化工》 EI CAS CSCD 北大核心 2020年第12期2426-2434,共9页 Fine Chemicals
基金 国家自然科学基金(51973015) 中央高校基本科研业务费专项资金(06500100,FRF-TP-19-046AIZ)。
关键词 电纺纳米纤维 取向 导电性能 热稳定性 力学性能 electrospun nanofibers orientation conductivity thermostability mechanical property
  • 相关文献

参考文献5

二级参考文献177

  • 1Diraitriou R, Mataliotakis GI, Angoules AG, et al. Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review [ J]. Injury, 2011, 42:3 - 15.
  • 2Calori G, Mazza E, Colombo M, et al. The use of bone-graft substitutes in large bone defects: any specific needs? [ J ]. Injury, 2011,42:56 -63.
  • 3Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering [ J ] Biomaterials, 2011, 32 ( 36 ) : 9622 - 9629.
  • 4Lu Q, Zhang B, Li M, et al. Degradation meehanism and control of silk fibroin [J]. Biomacromolecules, 2011, 12(4) : 1080 - 1086.
  • 5Anderson JM, Shire MS. Biodegradation and biocompatibility ofPLA and PLGA microspheres [ J ]. Advanced drug delivery reviews, 2012, 64:72 - 82.
  • 6Karageorgiou , Meinel L, Hofmann S, et al. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow strnmal cells [ J]. Journal of Biomedical Materials Research Part A, 2004, 71 (3) : 528 -537.
  • 7Pritchard EM, Valentin T, Boison D, et al. Incorporation of proteinase inhibitors into silk-based delivery devices for enhanced control of degradation and drug release [ J]. Biomaterials, 2011, 32(3) : 909 -918.
  • 8Li C, Vepari C, Jin HJ, et al. Electrospun silk-BMP -2 scaffolds for bone tissue engineering [ J]. Biomaterials, 2006, 27(16) : 3115 -3124.
  • 9Wang X, Wenk E, Zhang X. et al. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteoehondral tissue engineering [ J ]. Journal of Controlled Release, 2009, 134(2) : 81 -90.
  • 10Goodship A, Norrodin N, Francis M. The stimulation of prostaglandins synthesis by micromovement in fracture healing [ J]. Micromovement in Orthopaedics, 1992, 1:31 - 34.

共引文献38

同被引文献40

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部