期刊文献+

用于盐酸阿霉素释放的多响应性纳米凝胶 被引量:2

Multi-responsive nanogels for doxorubicin hydrochloride delivery
下载PDF
导出
摘要 用HNO3/H3PO4-NaNO2混合体系氧化甘蔗渣纤维素得到单羧基纤维素,然后在交联剂胱胺双丙烯酰胺(CBA)存在下,甲基丙烯酸酐修饰的单羧基甘蔗渣纤维素(MAMC-SBC)和N-异丙基丙烯酰胺(NIPAM)在水相中通过原位自由基共聚反应,得到具有氧化还原、pH和热响应性的纳米凝胶。通过FTIR、~1HNMR、SEM和高精度粒度分析仪对纳米凝胶的结构进行表征。结果表明,纳米凝胶是粒径分布均一的微球,在溶胀状态下平均粒度为(183±2)nm。盐酸阿霉素(DOX)作为模型药物被有效地装载到纳米凝胶中,药物载药效率高达82.7%。结果发现,通过还原剂、pH和温度及它们之间的协同效应可以精准地控制药物的释放。 Monocarboxylic cellulose was obtained by oxidation of sugarcane bagasse cellulose with HNO3/H3PO4-NaNO2 mixture system and then was modified by methacrylate anhydride.Then,redox,p H and thermal-responsive nanogels were prepared via in-situ free radical copolymerization of methacrylated monocarboxylic sugarcane bagasse cellulose(MAMC-SBC)and N-isopropylacrylamide(NIPAM)in aqueous phase in the presence of crosslinking agent cystamine bisacrylamide(CBA).The nanogels was characterized by FTIR,1 HNMR,SEM and high precision particle size analyzer.The results showed that the nanogels were microspheres with uniform particle size distribution.The average particle size was(183±2)nm in swelling state.Adriamycin hydrochloride(DOX)was effectively loaded into the nanogel as a model drug with a drug loading efficiency of up to 82.7%.The result reveal that DOX release could be precisely controlled by reducing agents,pH and temperature and the synergistic effects.
作者 刘俊任 王锋 潘远凤 LIU Junren;WANG Feng;PAN Yuanfeng(Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology,College of Chemistry and Chemical Engineering,Guangxi University,Nanning 530000,Guangxi,China;Asset Management Co.,Ltd.,Guangxi University,Nanning 530007,Guangxi,China)
出处 《精细化工》 EI CAS CSCD 北大核心 2020年第12期2554-2561,共8页 Fine Chemicals
基金 广西石化资源加工及过程强化技术重点实验室主任课题基金(2019Z003)。
关键词 甘蔗渣 纳米凝胶 多重响应 DOX 药物释放 功能材料 sugarcane bagasse nanogel multi-responsiveness DOX drug release functional materials
  • 相关文献

参考文献6

二级参考文献67

  • 1解光明,宋晓青,马宗斌,杨成.羟乙基纤维素接枝N-异丙基丙烯酰胺的研究[J].化学研究与应用,2007,19(6):629-632. 被引量:7
  • 2Dias G J, Peplow P V, Teixeira F. Osseous regeneration in the presence of oxidized cellulose and collagen[J]. Journal of Materials Science: Materials in Medicine, 2003, 14(9): 739-745.
  • 3Galgut P N. Oxidized cellulose mesh. I: Biodegradable membrane in periodontal surgery[J]. Biomaterials, 1990, 11(8): 561-564.
  • 4Wiseman D M, Saferstein L, Wolf S. Bioresorbable oxidized cellulose composite material for prevention of postsurgical adhesions: US, 6500777[P]. 2002.
  • 5Banker G S, Kumar V. Microfibrillated oxycellulose: US, 5405953[P]. 1995.
  • 6Jin B, Wu W T. Compositions for veterinary and medical applications: WO, 2005020997[P]. PCT, 2005.
  • 7Butrim S M, Bil'dyukevich T D, Butrim N S, et al. Structural modification of potato starch by solutions of nitrogen (IV) oxide in CC14[J]. Chemistry of Natural Compounds, 2007, 43(3): 302-305.
  • 8Painter T J. Preparation and periodate oxidation of C-6-oxycellulose: Conformational interpretation of hemiacetal stability[J]. Carbohydrate Research, 1977, 55(1): 95-103.
  • 9Johansson E E, Lind J. Free radical mediated cellulose degradation during high consistency ozonation[J]. Journal of Wood Chemistry and Technology, 2005(3), 25:171-186.
  • 10Manhas M S, Mohammed F, Khan Z. A kinetic study of oxidation of β-cyclodextrin by permanganate in aqueous media[J]. Colloids and Surfaces A: Physicochemial and Engineering Aspects, 2007, 295(1-3): 165-171.

共引文献48

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部