期刊文献+

Ptnc-FeOx界面作用提升Pt团簇催化CO氧化性能 被引量:3

Role of Ptnc-FeOx metal-oxide interface in enhancing the catalytic activity for CO oxidation
原文传递
导出
摘要 金属-氧化物界面作用对于调节金属催化剂的电子结构、提升催化剂的催化活性和稳定性起到重要影响,在纳米催化研究领域受到广泛关注。利用尿素沉积沉淀法合成了与FeOx形成界面作用的负载型Pt团簇(Ptnc,尺寸为(1.4±0.2)nm),它表现出相对单金属Ptnc催化剂显著提升的CO催化氧化活性。与具有类似Pt负载量的Pt/SiO2相比,Ptnc-FeOx/SiO2催化剂在同等条件下催化CO氧化的完全转化温度从180°C大幅降低至90°C,表观活化能从60 kJ·mol^−1降低到19 kJ·mol^−1,并具有高出20倍的转换频率(Turnover Frequency,TOF)。采用同步辐射X射线吸收谱学技术、原位漫反射傅里叶变换红外光谱、球差电镜等多种表征手段,对Ptnc-FeOx之间的界面相互作用进行了探讨。结果表明:Ptnc与FeOx之间通过形成的Pt-Fe金属键发生了从Fe向Pt的电荷转移,从而降低了Ptnc的d带中心位置,减弱了CO在Ptnc表面的吸附强度,有助于实现催化活性和反应动力学速率的提升。 [Background]Metal-oxide interface plays critical roles in promoting the catalytic activities of metal catalysts in a vast diversity of reactions.Maximizing this interfacial interaction so as to optimize the catalytic performance is an active subject of research that is worthy of intensive exploration.[Purpose]This study aims to develop new Pt-group catalysts that are highly active towards cryogenic CO catalytic oxidation,and explore effective strategies to engineer metal-oxide(hydroxide)interfaces to weaken the adsorption of CO and to enhance the adsorption/activation of O2.[Methods]Supported ultrasmall Pt nanoclusters(Ptnc-FeOx/SiO2)of(1.4±0.2)nm were synthesized using deposition-precipitation with urea(DPU).The catalytic performance towards CO oxidation was examined by using a fixed-bed U-shape flow quartz reactor.Extended X-ray absorption fine structure(EXAFS),in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS),transmission electron microscopy(TEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),and energy-dispersive Xray spectroscopy(EDX)techniques were combined to study the Ptnc-FeOx interfacial interaction.[Results]The Ptnc-FeOx/SiO2 catalyst shows superior catalytic performance than Pt/SiO2 towards the CO oxidation reaction.Kinetics tests show that both the apparent activation energy and turnover frequency of Ptnc-FeOx/SiO2 are greatly enhanced as compared with Pt/SiO2(19 kJ·mol^−1 vs.64 kJ·mol^−1;0.044 s^−1 vs.0.002 s^−1 at 37°C).[Conclusion]The charge transfer from Fe to Pt results in the downshifted d-band center of Pt and reduces the CO adsorption strength,and hence,playing important roles in promoting the catalytic activity of Pt catalysts.
作者 刘成勇 黄莉 宋雪洋 贺文雪 王思宇 龙志鑫 孙治湖 韦世强 LIU Chengyong;HUANG Li;SONG Xueyang;HEWenxue;WANG Siyu;LONG Zhixin;SUN Zhihu;WEI Shiqiang(National Synchrotron Radiation Laboratory,University of Science and Technology of China,Hefei 230029,China)
出处 《核技术》 CAS CSCD 北大核心 2021年第1期25-34,共10页 Nuclear Techniques
基金 国家重点研发计划(No.2017YFA0402800) 国家自然科学基金(No.U1632263、No.U1732116)资助。
关键词 金属-氧化物界面 Ptnc-FeOx催化剂 CO催化氧化 同步辐射X射线吸收精细结构 漫反射傅里叶 变换红外光谱 Metal-oxide interface Ptnc-FeOx catalyst CO catalytic oxidation XAFS DRIFTS
  • 相关文献

参考文献6

二级参考文献34

  • 1David L, Trimm Z, ?nsan I. Onboard fuel conversion for hydrogen-fuel-cell-driven venhicles[J]. Catalysis Reviews-Science and Engineering, 2001, 43(1-2):31-84. DOI:10.1081/CR-100104386.
  • 2Ralph T R, Hogarth M P. Catalysis for low temperature fuel cells[J]. Platinum Metals Review, 2002, 46(3):117-135.
  • 3Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel Cells, 2005, 5(2):187-200. DOI:10.1002/fuce.200400045.
  • 4Schmittinger W, Vahidi A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells[J]. Journal of Power Sources, 2008, 180(1):1-14. DOI:10.1016/j.jpowsour.2008.01. 070.
  • 5Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Reviews, 2007, 107(10):3904-3951. DOI:10.1021/cr050182l.
  • 6Hector R C, Branko N P. Stability of platinum based alloy cathode catalysts in PEM fuel cells[J]. Journal of Power Sources, 2006, 155(2):253-263. DOI:10.1016/j.jpowsour. 2005.05.011.
  • 7Carrette L, Friedrich K A, Stimming U. Fuel cellsfundamentals and applications[J]. Fuel Cells, 2001, 1(1):5-39. DOI:10.1002/1615-6854(200105)1:1<5::AIDFUCE5>3.0.CO;2-G.
  • 8Wang G X, Wu H M, David W, et al. Ni@Pt core-shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction[J]. Journal of Alloys and Compounds, 2010, 503(1):L1-L4. DOI:10.1016/j.jallcom.2010.04. 236.
  • 9Laetitia D, Tristan A, Raphael C, et al. Tuning the performance and the stability of porous hollow PtNi/C nanostructures for the oxygen reduction reaction[J]. American Chemical Society Catalysis, 2015, 5(9):5333-5341. DOI:10.1021/acscatal.5b01248.
  • 10Chung Y H, Chung D Y, Jung N, et al. Origin of the enhanced electrocatalysis for thermally controlled nanostructure of bimetallic nanoparticles[J]. The Journal of Physical Chemistry C, 2014, 118(19):9939-9945. DOI:10.1021/jp5019982.

共引文献20

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部