期刊文献+

石墨孔结构对锂离子电池倍率性能的影响 被引量:2

Effect of graphite pore structure on rate capability of Li-ion battery
下载PDF
导出
摘要 讨论负极材料特征对锂离子电池倍率性能的影响。对比4种人造石墨样品的结构、形貌等特征及倍率性能,发现孔结构状况特别是纳米级孔的分布,对倍率性能的影响较大,即电池的倍率性能与石墨纳米级孔的数量正相关。原因可能是:负极材料孔洞越多,提供的Li+迁移通道越多,可提高颗粒内Li+扩散的能力;孔洞越多的石墨材料,制成极片后的孔隙越丰富,极片的渗液能力较强,可缩短Li+传输路径。孔结构最丰富样品的孔体积为0.0052 cm 3/g,循环性能最好。制备的电池以5.0 C充电、1.0 C放电(2.00~3.65 V),循环寿命为233次,约是孔体积为0.0029 cm 3/g样品的1.75倍。 The influence of the characteristics of anode material on the rate capability of Li-ion battery was discussed.The characteristics of structure,morphology and rate capability of four kinds of artificial graphite samples were compared.It was found that the pore structure,especially the distribution of nanoscale pores had a greater impact on the rate capability.The rate capability of battery was positively related to the number of nanoscale pores.The reason might be:the more holes in the cathode material,the more Li+migration channels provided,which could improve the ability of Li+diffusion in the particles;the more holes in the graphite material,the more abundant nanoscale pores in prepared plates,the liquid seepage in the plates was relatively strong,which could shorten Li+transport distance.The sample with the most abundant pore structure had a total pore volume of 0.0052 cm 3/g and showed the best cycle performance.When charged at 5.0 C and discharged at 1.0 C(2.00-3.65 V),the service life of prepared battery was 233 times,which was about 1.75 times of which prepared by the sample with a pore volume of 0.0029 cm 3/g.
作者 何慧娟 朱敏 戴涛 梅海龙 HE Hui-juan;ZHU Min;DAI Tao;MEI Hai-long(Anhui Keda New Material Co.,Ltd.,Maanshan,Anhui 243100,China)
出处 《电池》 CAS CSCD 北大核心 2020年第6期569-573,共5页 Battery Bimonthly
关键词 锂离子电池 石墨 孔径分布 倍率性能 Li-ion battery graphite pore size distribution rate capability
  • 相关文献

参考文献4

二级参考文献24

  • 1吴锋,李丽.电动车用高功率二次电池研究进展[J].电池工业,2004,9(2):59-61. 被引量:5
  • 2时志强,樊丽萍,王成扬.商业化的锂离子电池石墨负极材料的研究进展[J].炭素,2006(1):3-6. 被引量:20
  • 3孟良荣,王金良.电动车电池现状与发展趋势[J].电池工业,2006,11(3):202-206. 被引量:35
  • 4[1]Huang H, Liu W, Huang X, et al. Effect of a rhombohedral phase on lithium intercalation capacity in graphite [J]. Solid State Ionics,1998, 110(3-4): 173-178.
  • 5[2]Chung G C, Jun S H, Lee K Y, et al. Effect of surface structure on the irreversible capacity of various graphitic carbon electrodes [J]. J Electrochem Soc, 1999, 146(5): 1664-1671.
  • 6[3]Suzuki K, Hamada T, Sugiura T. Effect of graphite structure on initial irreversible reaction in graphite anodes [J]. J Electrochem Soc,1999, 146(3): 890-897.
  • 7[4]Darling R, Newman J. Modeling a porous intercalation electrode with two characteristic particle sizes [J]. J Electrochem Soc, 1997, 144(12): 4201-4208.
  • 8[5]Cao F, Barsukov I V, Bang H J, et al. Evaluation of graphite materials as anodes for lithium-ion batteries [J]. J Electrochem Soc,2000, 147(10): 3579 - 3582.
  • 9[6]Aurbach D, Markovsky B, Shechter A, et al. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures [J]. J Electrochem Soc, 1996, 143(12): 3809 - 3820.
  • 10石美荣,李孟元,段兴潮,刘春玲,董文生.多孔微晶炭的制备及储锂性能研究[J].电源技术,2011,35(11):1346-1350. 被引量:1

共引文献32

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部