摘要
SSD卷积神经网络一直对较小目标检测精度不佳。对此在SSD网络结构的基础上引入空洞卷积(Dilated Convolution),并组建空洞金字塔模块(Pyramid Dilated Convolution)和特征空洞金字塔模块(Feature Pyramid Dilated Convolution)融入SSD中,提升了网络浅层特征层的语义信息,提高了深层特征层的感受野和特征提取能力,构建了新型网络结构Pyramid Dilated SSD(PDSSD)。实验结果表明,PDSSD在PASCAL-VOC数据集上的检测mAP(Mean Average Precision)值高达82.1%,检测精度和小目标检测能力明显高于SSD,并且网络训练速度和mAP值领先于其他主流算法。
The SSD convolutional neural network is used to detect small objects with poor accuracy.Based on the SSD network structure,we introduce the dilated convolution,and construct the pyramid dilated convolution and feature pyramid dilated convolution into SSD.It improves the semantic information of the shallow feature layer,improves the receptive field and feature extraction ability of the deep feature layer,and constructs a new network structure,pyramid digested SSD(PDSSD).The experimental results show that the mean average precision(mAP)of PDSSD on PASCAL-VOC dataset is as high as 82.1%,the detection accuracy and small target detection ability of PDSSD are significantly higher than SSD,and the network training speed and mAP value are ahead of other mainstream algorithms.
作者
王鹏
陆振宇
詹天明
戴玉亮
芦佳
Wang Peng;Lu Zhenyu;Zhan Tianming;Dai Yuliang;Lu Jia(School of Electronic and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China;School of Information Engineering,Nanjing Audit University,Nanjing 211815,Jiangsu,China)
出处
《计算机应用与软件》
北大核心
2021年第1期149-156,191,共9页
Computer Applications and Software
基金
国家自然科学基金项目(61773220)
国家重点研发计划项目(2016YFC0203301)
江苏省自然科学基金项目(BK20150523)。
关键词
目标检测
PDSSD
空洞卷积
空洞金字塔
特征空洞金字塔
Object detection
PDSSD
Dilated convolution
Pyramid dilated convolution
Feature pyramid dilated convolution