期刊文献+

基于注意力模型的篮球视频事件和关键角色检测方法 被引量:2

DETECTION OF BASKETBALL VIDEO EVENTS AND KEY ROLES BASED ON ATTENTION MODEL
下载PDF
导出
摘要 为了对篮球比赛视频中的关键角色和重要事件进行检测,考虑到"注意力"与正在进行的篮球活动高度相关,提出一种基于注意力模型的方法。构建篮球比赛数据集,对11个关键的事件类型进行手工识别;对视频中的运动员进行跟踪,跟踪特征采用双向长短期记忆(Bi-directional Long Short-Term Memory,BLSTM)网络表示,使用注意力模型从输入到输出对元素进行对齐;使用另一个BLSTM对受关注的特征进行处理,以进行事件的检测和分类。实验结果表明,所提方法在事件分类和检测上的性能均优于一些同类方法。另外,除对篮球事件进行识别之外,还能够识别参与事件中的关键球员。 To detect key roles and important events in basketball game video,a method based on attention model is proposed,considering that attention is highly correlated with ongoing basketball activities.The data set of basketball matches was constructed and 11 key event types were identified manually.Players in the video were tracked,and the tracking features were represented by bi-directional long short-term memory(BLSTM)network.The elements were aligned from input to output using the attention model.Another BLSTM was used to process the features of interest for event detection and classification.The experimental results show that the performance of proposed method is better than some similar methods in event classification and detection.In addition,besides identifying basketball events,it can also identify key player involved in events.
作者 罗森 覃礼荣 Luo Sen;Qin Lirong(Guangxi Science&Technology Normal University,Laibin 546199,Guangxi,China;Wuzhou University,Wuzhou 543002,Guangxi,China)
出处 《计算机应用与软件》 北大核心 2021年第1期186-191,共6页 Computer Applications and Software
基金 广西高等教育本科教学改革工程项目(2016JGA384)。
关键词 注意力模型 关键角色检测 双向长短期记忆网络 分类 识别 Attention model Key role detection Bi-directional long short-term memory network Classification Recognition
  • 相关文献

参考文献6

二级参考文献68

  • 1陈雪,朱敏,钟煜,范量.基于HTM的离线手写签名识别及改进[J].四川大学学报(工程科学版),2011,43(S1):146-150. 被引量:5
  • 2Yang Liangtu,Proc IEEE International Conference on Intelligent Processing Systems,1997年,502页
  • 3Zhan B, Monekosso DN, Remagnino P, Velastin SA, Xu LQ. Crowd analysis: A survey. Machine Vision and Applications, 2008, 19(5-6):345-357. [doi: 10.1007/s00138-008-0132-4].
  • 4Junior JCSJ, Musse SR, Jung CR. Crowd analysis using computer vision techniques. IEEE Signal Processing Magazine, 2010,27(5): 66-77. [doi: 10.1109/MSP.2010.937394].
  • 5Thida M, Yong YL, Climent-Perez p, Eng HL, Remagnino P. A literature review on video analytics of crowded scenes. In: Proc. of the Intelligent Multimedia Surveillance. Berlin, Heidelberg: Springer-Verlag, 2013. 17-36. [doi: 10.1007/978-3-642-41512-8 2].
  • 6Li T, Chang H, Wang M, Ni BB, Hong RC, Yan SC. Crowded scene analysis: A survey. IEEE Trans, on Circuits and Systems for Video Technology, 2014,25(3):367-386. [doi: 10.1109/TCSVT.2014.2358029].
  • 7Kong D, Gray D, Tao H. A viewpoint invariant approach for crowd counting. In: Proc. of the 18th Int’l Conf. on Pattern Recognition. 2006. 1187-1190. [doi: 10.1109/TCSVT.2014.2358029].
  • 8Kratz L, Nishino K. Tracking with local spatio-temporal motion patterns in extremely crowded scenes. In: Proc. of the Computer Vision and Pattern Recognition (CVPR). 2010. 693-700. [doi: 10.1109/CVPR.2010.5540149].
  • 9Benabbas Y, Ihaddadene N, Djeraba C. Motion pattern extraction and event detection for automatic visual surveillance. Journal on Image and Video Processing, 2011,2011(1):413-447. [doi: 10.1155/2011/163682].
  • 10Solmaz B, Moore BE, Shah M. Identifying behaviors in crowd scenes using stability analysis for dynamical systems. IEEE Trans, on Pattern Analysis and Machine Intelligence, 2012,34(10):2064-2070. [doi: 10.1109/TP AMI.2012.123].

共引文献58

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部