摘要
随着大数据时代的来临,网络舆情对消费者情感分析和商家营销策略产生重大影响。如何利用大数据技术提高车企舆情情感分析效能,受到文本挖掘研究者广泛关注。针对传统RNN在长文本分类中的长期依赖问题,提出了一种注意力机制与Bi-LSTM结合的混合分类算法(At-Bi-LSTM)。算法利用Bi-LSTM分析车企网络评论的情感,引入注意力机制计算不同单词对评论情感的贡献权重,降低长文本中无关词对分类结果的影响。实验证明,At-Bi-LSTM算法在车企舆情情感分类上取得了比朴素贝叶斯、SVM、LSTM更好的分类效果。
With the advent of the era of big data,online public opinion has a significant impact on consumer sentiment analysis and business marketing strategy.How to use big data technology to improve the efficiency of sentiment analysis of automobile enterprises′public opinion has been widely concerned by text mining researchers.Aiming at the long-term dependence of traditional RNN in long text classification,a hybrid classification algorithm(At-BI-LSTM)combining attention mechanism and Bi-LSTM is proposed.The algorithm uses Bi-LSTM to analyze the emotion of online reviews of automobile enterprises,and introduces attention mechanism to calculate the contribution weight of different words to the sentiment of comments,so as to reduce the influence of irrelevant words in long text on classification results.Experiments show that At-BI-LSTM algorithm achieves better classification effect than Naive Bayes,SVM and LSTM.
作者
李宸严
刘继
Li Chenyan;Liu Ji(School of Statistics and Data Science,Xinjiang University of Finance,Wulumuqi 830012,China)
出处
《信息技术与网络安全》
2021年第1期45-49,共5页
Information Technology and Network Security
基金
新疆维吾尔自治区社会科学基金(19BTJ036)
新疆维吾尔自治区高校科研计划项目(XJEDU2019SI006)。
关键词
注意力机制
Bi-LSTM
车企舆情
情感分析
attention mechanism
Bi-LSTM
public opinion of car enterprises
emotion classification