期刊文献+

面向对象的高分辨率遥感影像建筑物变化检测 被引量:9

Object-oriented Detection of Building Changes Based on High Spatial Resolution Remote Sensing Image
下载PDF
导出
摘要 以武汉市东湖高新技术开发区部分区域为研究区,提出基于面向对象的高分辨率遥感影像建筑物变化检测法.利用BMI算法提取建筑物,利用CVA算法进行变化检测得到全部对象差异度,利用EM算法的贝叶斯阈值计算方法确定变化阈值.结果表明,基于面向对象的变化检测总体精度为89.48%,Kappa系数为0.86,优于基于像元的变化检测,为高分辨率遥感影像建筑物的变化检测提供了一种新的思维方式和方法. Based on the object-oriented method of building change detection,a new method of building change detection based on high-resolution remote sensing image is proposed.BMI algorithm was used to extract buildings,CVA algorithm was used to detect changes to obtain all object differences,and the bayesian threshold calculation method of EM algorithm was used to determine the change threshold.The results show that the overall accuracy of object-based change detection is 89.48%and the Kappa coefficient is 0.86,which is superior to pixel-based change detection and provides a new way of thinking and method for the change detection of buildings with high-resolution remote sensing image.
作者 卢丽琛 洪亮 LU Lichen;HONG Liang(Yunnan Normal University Faculty of Geography,Kunming 650500,China;Yunnan Normal University GIS Technology Research Center of Resource and Environment in Western China of Ministry of Education,Kunming 650500,China;Yunnan Normal University Center for Geospatial Information Engineering and Technology of Yunnan Province,Kunming 650500,China;Yunnan Normal University Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan,Kunming 650500,China;Yunnan Normal University Center for Bay of Bengal Area Studies of Yunnan Normal University,Kunming 650500,China;Yunnan Normal University Center for Myanmar Studies of Yunnan Normal University,Kunming 650500,China;Yunnan Normal University Center for Cambodia Studies of Yunnan Normal University,Kunming 650500,China)
出处 《牡丹江师范学院学报(自然科学版)》 2021年第1期50-54,共5页 Journal of Mudanjiang Normal University:Natural Sciences Edition
基金 国家自然科学基金项目(41661082,41861048) 云南省自然科学基金项目(2018FB082)。
关键词 高分辨率 变化检测 基于像元 面向对象 high spatial resolution change detection pixel-based object-oriented
  • 相关文献

参考文献2

二级参考文献24

  • 1孙微微,刘才兴,田绪红.基于增益的数据样本分布描述方法[J].计算机应用,2005,25(5):1004-1005. 被引量:2
  • 2王圆圆,李京.基于决策树的高光谱数据特征选择及其对分类结果的影响分析[J].遥感学报,2007,11(1):69-76. 被引量:22
  • 3Singh A. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 1989, 10(6): 989-1003
  • 4Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E. Digital change detection methods in ecosystem monitoring: a review. International Journal on Remote Sensing, 2004, 25(9): 1565-1596
  • 5Lu D, Mausel P, Brondizio E, Moran E. Change detection techniques. International Journal on Remote Sensing, 2004, 25(12): 2365-2401
  • 6Ridd M K, Liu J. A comparison of four algorithms for change detection in an urban environment. Remote Sensing Environment, 1998,63(2): 95-100
  • 7Radke R J, Andra S, Al-Kofahi O, Roysam B. Image change detection algorithms: a systematic survey. IEEE Transactions on Image Processing, 2005, 14(3): 294-307
  • 8Bruzzone L, Prieto D F. Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3): 1171-1182
  • 9Bazi Y, Bruzzone L, Melgani F. An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(4): 874--887
  • 10Bruzzone L, Carlin L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2587-2600

共引文献38

同被引文献78

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部