期刊文献+

基于多域多维特征融合的海面小目标检测 被引量:10

Detection of Sea-surface Small Target Based on Multi-domain and Multi-dimensional Feature Fusion
下载PDF
导出
摘要 多维特征检测技术是提高海面小目标检测的有效途径。为了进一步提升海面小目标检测性能,本文提出基于多域多维特征融合的检测方法。首先,从时域、频域、时频域、极化域等多域,充分挖掘海杂波和含目标回波的差异性,并将这些差异性表征为多维特征,构建高维特征空间。其次,通过极化域和特征域的多维特征线性融合,将多维特征压缩到3D特征空间中,获得高维度信息的同时减少维度计算代价。然后,结合凸包学习算法获得3D判决区域,实现异常检测。最后,基于IPIX实测数据的实验结果表明:相对现有的极化检测器,提出的检测器具有25%以上的显著性能提升。 Multi-dimensional feature detection technology is an effective way to improve detection performance of sea-surface small targets.A detection method based on multi-domain and multi-dimensional feature fusion is proposed to further improve performance in this paper.First,the differences between sea clutter and target returns are fully explored in time domain,frequency domain,time-frequency domain and polarization domain,which are represented as multi-dimensional features to construct high-dimensional feature space.Second,multi-dimensional features are compressed into 3-dimentional feature space by the linear fusion in polarization domain and feature domain,which can obtain high-dimensional information and reduce dimensional computational cost at the same time.Third,convex hull learning algorithm is used to obtain the 3 D decision region and realize the anomaly detection.Finally,experimental results via IPIX data show that the proposed detector can attain significant performance improvement of more than 25%,relative to the existing polarization detectors.
作者 施赛楠 杨静 王杰 Shi Sainan;Yang Jing;Wang Jie(College of Electronic and Information Engineering,Nanjing University of Information Science&Technology,Nanjing,Jiangsu 210044,China)
出处 《信号处理》 CSCD 北大核心 2020年第12期2099-2106,共8页 Journal of Signal Processing
基金 国家自然科学基金(61901224) 南京信息工程大学科研启动经费。
关键词 海杂波 小目标检测 多维特征 特征融合 sea clutter small target detection multi-dimensional feature feature fusion
  • 相关文献

参考文献4

二级参考文献29

  • 1石志广,周剑雄,付强.K分布海杂波参数估计方法研究[J].信号处理,2007,23(3):420-424. 被引量:18
  • 2姜斌,王宏强,黎湘,郭桂蓉.S波段雷达实测海杂波混沌分形特性分析[J].电子与信息学报,2007,29(8):1809-1812. 被引量:17
  • 3Ward K D,Tough R J A,and Watts S.Sea Clutter:Scattering,the K Distribution and Radar Performance[M].London:The Institution of Engineering and Technology,2006:13-44.
  • 4Roy L P and Kumar R V R.Accurate K-distributed clutter model for scanning radar application[J].IET Radar,Sonar & Navigation,2010,4(2):158-167.
  • 5Watts S.Modeling and simulation of coherent sea clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2012,48(4):3303-3317.
  • 6Dong Y.Optimal coherent radar detection in a K-distributed clutter environment[J].IET Radar,Sonar & Navigation,2012 6(5):283-292.
  • 7Middleton D.New physical-statistical methods and models for clutter and reverberation:the KA-distribution and related probability structures[J].IEEE Journal of Oceanic Engineering,1999,24(3):261-284.
  • 8Ward K D and Tough R J A.Radar detection performance in sea clutter with discrete spikes[C].International Radar Conference,Edinburgh,2002:253-257.
  • 9Farshchian M and Posner F L.The Pareto distribution for low grazing angle and high resolution X-band sea clutter[C].IEEE Radar Conference,Washington,2010:789-793.
  • 10Weinberg G V.Assessing Pareto fit to high-resolution high-grazing-angle sea clutter[J].Electronics Letters,2011,47(8):516-517.

共引文献39

同被引文献83

引证文献10

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部