期刊文献+

基于SDC-CuO隔离层的中温固体氧化物电解池

Performance of SDC-CuO interlayer for intermediate temperature solid oxide electrolysis cell
下载PDF
导出
摘要 隔离层位于中温固体氧化物电解池(solid oxide electrolysis cell,SOEC)的氧电极与电解质之间,阻止两者相互反应。为提高以Ce0.85Sm0.15O2-δ(SDC)为隔离层的固体氧化物电解池(SOEC)的电化学性能,使用向SDC中加入过渡族金属氧化物CuO的方法,利用CuO对SDC起到助烧结作用,提高SDC隔离层的致密度,改善其作为隔离层性能。为验证该方法是否可行,分别制备了以SDC和SDC-CuO作为隔离层的SOEC,并对其进行了表面微观形貌、电化学性能研究。研究结果表明,SDC-CuO隔离层的表面微观形貌显示出较为致密的结构,能够起到更好的元素扩散阻碍作用;在开路电压及工作温度800℃的条件下,SDC-CuO为隔离层的SOEC极化电阻明显低于SDC作为隔离层的SOEC极化电阻,证明通过加入CuO提高SDC隔离层性能进而改善SOEC性能的想法是可行的。 The interlayer is between the oxygen electrode and electrolyte of the solid oxide electrolysis cell(SOEC).The main function is to prevent the two from reacting with each other.In order to improve the electrochemical performance of the SOEC with SDC as the interlayer,the method is to add transition metal oxide CuO to SDC.CuO plays a role in assisting sintering of SDC,thereby increasing the density of SDC interlayer and improving its performance.To verify the feasibility of this method,the SOEC with SDC and SDC-CuO as the interlayer were prepared and tested by the surface micromorphology and electrochemical properties.The results show that the surface microstructure of the SDC-CuO interlayer is denser,which can play a better role in preventing element diffusion.Under the open circuit voltage and operating temperature of 800℃,the SOEC polarization resistance of SDC-CuO as the interlayer was significantly lower.This proved the idea that adding CuO can improve the performance of SDC interlayer and then improve the SOECs performance is feasible.
作者 于吉 王晓妍 田宁 郑杰 屈艳梅 YU Ji;WANG Xiaoyan;TIAN Ning;ZHENG Jie;QU Yanmei(College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China)
出处 《沈阳师范大学学报(自然科学版)》 CAS 2020年第6期491-494,共4页 Journal of Shenyang Normal University:Natural Science Edition
基金 辽宁省科技厅自然科学基金资助项目(2019JH3/30100036)。
关键词 中温固体氧化物电解池 隔离层 SDC-CuO 电化学性能 intermediate temperature solid oxide electrolysis cell interlayer SDC-CuO electrochemical performance
  • 相关文献

参考文献1

二级参考文献137

  • 1中华人民共和国国务院.节能减排“十二五”规划,(2012—10-10).[2016一01—30].http://WWW.gov_cn/xxgk/pub/govpublic/mrlm/201208/t20120821—65505.html.
  • 2JeremyRifkin.第三次工业革命.张体伟(ZhangTW),孙豫宁(SunYN)(Trans).北京:中信出版社,2012.
  • 3时琛丽(ShiJL),高虎(GaoH),王红芳(WangHF).中国能源,2015,2:11.
  • 4陈冠益(ChenGY),孔鞲(KongW),徐莹(XuY),李婉晴(LiWQ),马隆龙(MaLL),颜蓓蓓(YanBB),陈鸿(ChenH).浙江大学学报(工学版),2014,7:1318.
  • 5Stoots C M, O'Brien J E, Condie K G, Hartvigens J J. Inter- national Journal of Hydrogen Energy, 2010, 35 (10) : 4861.
  • 6Bierschenk D M, Wilson J R, Barnett S A. Energy Environ. Sci. , 2011, 4: 944.
  • 7Jensen S H, Graves C, Mogensen M, Wendel C, Braun R, Hughes G, Gao Z, Barnett S A. Energy Environ. Sci. , 2015, 8 : 2471.
  • 8OBrien J E,Mckellar M G, Stoots C M, Herring J S, Hawkes J L. Int. J. Hydrogen Energy, 2009, 34(9) : 4216.
  • 9O' Brien J E, Stoots C M, Herring J S, Mckellar M G, Harvego E A, Sohal M S, Condie K G. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy Technology Summary (2010-02-01). [ 2016-01-30l. https://www, researchgate, net/ publication/255214193 _ High _ Temperature _ Electrolysis _ for _ Hydrogen Production _ from _ Nuclear _ Energy _ TechnologySummary? ev = auth pub.
  • 10李汶颖(LiWY).清华大学博士论文,2015.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部