期刊文献+

一种无标度超网络动态模型的建立与分析 被引量:2

Establishment and Analysis on a Class of Scale-free Hypernetworks Dynamic Model
下载PDF
导出
摘要 基于超网络理论,构造了一个新的演化超网络,该网络包含新节点和新超边的增长、旧节点和旧超边的消失,亦包括超边的重连。在该超网络演化过程中,除了通过增加新节点来增长超边之外,还可以在旧节点之间构建新的超边。这种同时有增有减的进化超网络模型比只有增加的演化超网络模型更具有现实意义。利用泊松过程理论和连续化方法,得到了超网络的稳态平均超度分布和度分布。数值模拟的结果表明,演化超网络服从广义幂律分布,具有“倾向性地依附”的现象。对稳态平均超度分布的理论预测与数值模拟结果吻合较好。 Based on hypernetwork theory,we construct a new evolving hypernetwork,which incorporating new nodes and new hyperedges growing,old nodes and old hyperedges disappearing,or rewiring of hyperedges from some nodes to anothers.Besides the growth of hyperedges by adding new nodes,it is also possible that a new hyperedge can be constructed between old nodes in hypernetworks.This evolving hypernetwork model with both increasing and decreasing is more realistic than the evolving model only with increasing.By employing Poisson process theory and continuous method,we obtain stationary average hyperdegree distribution and degree distribution of the hypernetwork.Analytical result shows that the evolving hypernetwork following a generalized power-law distribution,has a phenomenon of“tendentiously attached”.The theoretical prediction of the stationary average hyperdegree distribution and degree distribution are in good agreement with the real numerical simulation results.
作者 邹灵果 周志东 ZOU Ling-guo;ZHOU Zhi-dong(Xiamen Ocean Vocational College,Xiamen 361009,China;College of Mathematics and Statistics in Guangxi Normal University,Guilin 541006,China)
出处 《宜春学院学报》 2020年第12期46-52,共7页 Journal of Yichun University
基金 湖南省教育厅优秀青年基金项目(项目编号:17B040) 湖南省“双一流”建设项目应用特色学科(湘教通[2018]469号)共同资助。
关键词 复杂网络 超网络 稳态平均超度分布 无标度 幂律分布 complex network hypernetwork stationary average hyperdegree distribution scale-free power-law distribution
  • 相关文献

参考文献3

二级参考文献42

  • 1方锦清.试论四大层次的高科技网络的若干特点和思考[M]// 陈关荣,许晓鸣.复杂网络理论与应用.香港:上海系统科学出版社,2008:1-43.
  • 2方锦清,汪小帆,郑志刚,毕桥,狄增如,李翔.一门崭新的交叉科学:网络科学(上)[J].物理学进展,2007,27(3):239-343. 被引量:130
  • 3汪小帆,李翔,陈关荣.网络科学导论[M].北京:高等教育出版社,2012.
  • 4BARABASI A L. Special issue on complexity [J]. Nature Physics, 2012, 8: 14-16.
  • 5BARABASIAL.链接网络新科学[M].徐彬,译.长沙:湖南科学技术出版社,2007.
  • 6BARABASIAL.爆发[M].马慧,译.北京:中国人民大学出版社,2012.
  • 7TEDGLEWIS, Network science theory and application [M]. UAS: WILEY, 2008.
  • 8WATTS D J, STROGATZ S H. Collective dynamics of"small-world" networks [J]. Nature, 1998, 393(6684): 440-442.
  • 9BARABASI A L, ALBERT R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439): 509-512.
  • 10ALBERT R, BARABASI A L. Statistical mechanics of complex networks [J]. Rev Mod Phys, 2002, 74(1): 47-97.

共引文献86

同被引文献26

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部