期刊文献+

一种面向图像线特征提取的改进投票域的张量投票算法 被引量:1

A tensor voting algorithm for image line feature extraction based on improved voting field
下载PDF
导出
摘要 张量投票算法利用人类感知功能原理进行计算,它具有较强的鲁棒性、非迭代性、参数唯一性等特性,其非迭代性具有节省计算时间的显著性特征,因此,广泛应用于图像线特征提取,但在一些含有复杂噪声的图像中,却不能得到更为连续的显著线特征信息。本文针对此问题,提出一种改进的具有迭代性的张量投票算法,它主要是对投票域进行迭代改进,使改进后的张量投票算法可以提取更为连续的显著线特征,且与传统的张量投票算法相比,本文算法既缩短了计算时间,又提取了更为连续的线特征图像。 Tensor voting algorithm is calculated by the principle of human perception function,which has strong robustness,non-iteration,uniqueness of parameters and other characteristics.Its non-iteration has the significance feature of saving computation time,so,it is widely used in image line feature extraction.However,in some complex noisy images,it cannot obtain more continuous saliency line feature information.In order to solve this problem,an improved iterative tensor voting algorithm was proposed,which mainly improved the voting domains iteratively,so that the improved tensor voting algorithm could extract more continuous salient line features.Compared with the traditional tensor voting algorithm,the proposed method in this paper not only shortened the calculation time,but also extracted more continuous line feature images.
作者 王莉 苏李君 WANG Li;SU Lijun(Yinxing Hospitality Management College,Chengdu Uinversity of Information Technology,Chengdu 611730,Sichuan,China;School of Science,Xi’an University of Technology,Xi'an,710054,Shaanxi,China)
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2021年第1期133-137,共5页 Journal of Henan Polytechnic University(Natural Science)
基金 陕西省自然科学基金资助项目(2018JQ5094) 陕西省自然科学基础研究计划项目(2018JQ1029)。
关键词 张量投票算法 投票域 迭代 图像线特征 tensor voting algorithm voting domain iteration image line feature
  • 相关文献

参考文献7

二级参考文献50

  • 1彭玉华.一种改进的小波变换阈值去噪方法[J].通信学报,2004,25(8):119-123. 被引量:41
  • 2左西年,刘来福,王心丽,沈佐锐.基于Tensor Voting的蚁蛉翅脉修补[J].北京师范大学学报(自然科学版),2005,41(2):135-138. 被引量:9
  • 3邵晓芳,姚伟,孙即祥,季虎.基于视觉竞争合作机制的主观轮廓提取[J].中国图象图形学报,2005,10(8):1024-1028. 被引量:5
  • 4邵晓芳,孙即祥.改进的张量投票算法[J].计算机辅助设计与图形学学报,2006,18(7):1028-1031. 被引量:11
  • 5GUY G, MEDIONI G. Inferring global perceptual contours from local features [ J ]. International Journal of Computer Vision, 1996,20 : 113-133.
  • 6MEDIONI G, LEE M S,TANG C K. A computational framework for feature extraction and segmentation [ M ]. Elsevier, 1999.
  • 7MORDOHAI P, MEDIONI G. Tensor voting: a pemeptual organization approach to computer vision and machine learning [ C ]//BOVIK A C ( editor ), Synthesis Lectures on Image, Video, and Multimedia Processing, Morgan claypool, 2006,28 ( 6 ) : 968 -982.
  • 8GUY G,MEDIONI G. Inference of surfaces, 3D curves, and junctions from sparse, noisy, 3D data [ J]. IEEE Trans on PAMI,1997,19(11) :1265-1277.
  • 9JIA J, TANG C K. Tensor voting for image correction by global and local intensity alignment [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005, 27(1) :36-51.
  • 10TONG W S, TANG C K. Robust estimation of adaptive tensors of curvature by tensor voting [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2005, 27 (3) :434-449.

共引文献13

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部