期刊文献+

Lipschitz Invariance of Critical Exponents on Besov Spaces

原文传递
导出
摘要 In this paper we prove that the critical exponents of Besov spaces on a compact set possessing an Ahlfors regular measure is an invariant under Lipschitz transforms.Under mild conditions,the critical exponent of Besov spaces of certain selfsimilar sets coincides with the walk dimension,which plays an important role in the analysis on fractals.As an application,we show examples having different critical exponents are not Lipschitz equivalent.
出处 《Analysis in Theory and Applications》 CSCD 2020年第4期457-467,共11页 分析理论与应用(英文刊)
基金 The second author is supported by NSFC Nos.10631040 and 11471075。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部