摘要
针对准则权重不确定且方案准则为梯形模糊数的风险型多准则决策问题,提出了一种基于前景理论的研究方法.方法引入决策者的风险态度,以正、负理想点方案作为参考点计算各准则的前景价值,基于G1法、G2法和离差最大化法分别求解权重,最后根据各方案的综合前景值进行排序并进行比较.同时,考虑不同的风险态度值,比较基于三种方法下方案的排序结果.结果表明:只要风险态度值满足某个范围,虽然三种方法求得的权重各不相同,但最终方案的选择是一致的.
For the risky multi-criteria decision making problems,in which the criteria weights are uncertain and the criteria values of the alternatives are trapezoidal fuzzy numbers,this paper proposes a research method based on prospect theory.In this paper,regarding positive and negative ideal points as the reference points,we consider risky attitude of the decision makers,calculate prospect values of the each alternative,then calculate weight values based on the G1,G2,and maximize deviations methods respectively.Finally,ranking and comparing each alternative according to the overall prospect values.At the same time,considering different values of risk attitude,we compare the ranking results of three methods.The results show that as long as the risk attitude value satisfies a certain range,although the weights obtained by the three methods are different,the choice of the final scheme is consistent.
作者
庄惠丹
邓雪
ZHUANG Hui-dan;DENG Xue(School of Mathematics,South China University of Technology,Guangzhou 510640,China)
出处
《数学的实践与认识》
北大核心
2020年第24期1-8,共8页
Mathematics in Practice and Theory
基金
教育部人文社会科学青年基金项目(18YJAZH014-x21xY9180090)
2019广东省自然科学基金面上项目(2019A1515011038)
广东省软科学研究项目(2018A070712006,2019A101002118)
广东省研究生示范课程(2019SFKC07)。
关键词
前景理论
多准则决策
G1法
G2法
离差最大化
prospect theory
multi-criteria decision making
G1 method
G2 method
maximizing deviations method