摘要
研究了一个具有Logistic增长的随机溶瘤疗法模型的动力学行为.首先分析了模型全局正解的存在性;进一步,通过随机微分方程理论,构造Lyapunov函数,证明了模型在其确定性系统无病平衡点和地方病平衡点存在渐近行为;最后,通过数值模拟验证了理论分析结果的正确性.
In this paper,we study the dynamical behavior of a stochastic oncolytic therapy model with Logistic growth.We first analyse the existence of the global positive solution of the model;further,by the stochastic differential equation theory and constructing the Lyapunov function,we prove the asymptotic behavior of the model at the disease-free equilibrium point and the endemic equilibrium point of the deterministic system.Finally,the correctness of the theoretical analysis results is verified by numerical simulations.
作者
董亚男
史培林
DONG Ya-nan;SHI Pei-lin(Taiyuan University of Technology,Taiyuan 030024,China)
出处
《数学的实践与认识》
北大核心
2020年第24期99-108,共10页
Mathematics in Practice and Theory
基金
教育部科学技术研究重点项目(210030)
山西省自然科学基金(2013011002-3)。
关键词
溶瘤疗法
随机系统
Itǒ’s公式
全局正解
渐近行为
oncolytic therapy
stochastic system
itǒ’s formula
global positive solution
asymptotic behavior