摘要
为更好地研究低温、低硅铁水的脱磷规律,在马鞍山钢铁股份有限公司70 t转炉现场进行试验,发现前期成渣速度较慢、中期炉渣返干导致脱磷反应受限,一倒脱磷率较低。现场优化通过改善加料方式及枪位控制,使得吹炼3 min时渣中w(FeO)由10.46%提高至24.70%,加强了脱磷反应,达到全程化渣及脱磷的目的。优化后的低温、低硅铁水冶炼使得现场一倒脱磷率由72.1%提高至86.6%,一倒出钢率由68.4%提高至74.3%,钢铁料消耗和氧枪枪龄等技术指标也得到改善,为现场的快节奏生产和节能降本提供了支持。
The dephosphorization rule of low temperature and low silicon molten iron was better studied in Masteel 70 t converter site,the limited dephosphorization reaction and low dephosphorization rate due to the slow slag formation in the early stage and the drying back in the medium stage.The FeO mass fraction in slag was increased from 10.46% to 24.70% at the third minute by improving the feeding method and lance position control,the dephosphorization reaction was strengthened to achieve the purpose of slagging and dephosphorization.The dephosphorization rate at first turning down increased from 72.1% to 86.6%,and tapping rate at first turning down increased from 68.4% to 74.3% by the optimization,and the technical indicators such as steel consumption and oxygen lance age had been improved which provided support for fast-paced production and energy saving in the field.
作者
刘威
邓南阳
胡文华
田友朋
况贤高
赵滨
LIU Wei;DENG Nanyang;HU Wenhua;TIAN Youpeng;KUANG Xiangao;ZHAO Bin(Long products division of Ma’anshan Iron&Steel Co.,Ltd.,Ma’anshan 243000,China)
出处
《炼钢》
CAS
北大核心
2020年第6期14-18,38,共6页
Steelmaking
关键词
低温
低硅铁水
脱磷
物相
黏度
low temperature
low silicon molten iron
dephosphorization
phase
viscosity