期刊文献+

一种用于求解项目时间管理问题的前k个最优解的新算法 被引量:1

A New Method to Calculate the k Best Solutions to the Project Time Management Problem
原文传递
导出
摘要 项目管理问题(Project Management Problcm,PMP)是一个多目标优化问题,它通常需要考虑三个相互冲突的优化目标:时间,质量和成本。大多数现存的方法只能为项目管理问题求解近似的Parcto前沿。理论上,如果能够针对每个单目标优化问题找出前k个单目标最优解,则基于所有单目标优化问题的前k个单目标最优解,就可以保证找到离散多目标优化问题(比如PMP)的完整Parcto前沿。因此,求解多目标优化问题的完整Parcto前沿的关键是要设计有效的方法以求解出每个单目标优化问题的前k个单目标最优解。本文针对如何计算项目时间管理问题(Project Time Management Problem,PTMP)的k个最优解,提出了一种涟漪扩散算法,该算法通过模仿自然涟漪扩散现象,从而确定管理项目的前k个最佳方案,使得项目总时间最短。对比实验证明了新方法的有效性。 Project Management Problem(PMP) is a multi-objective optimization Problem,which usually needs to consider three conflicting optimization objectives:time,quality and cost.Most of methods can only solve approximate Pareto frontiers for project management problems.Theoretically,if the first k single objective optimal solutions can be found for each single objective optimization problem,then the complete Pareto front of discrete multi-objective optimization problem(such as PMP) can be guaranteed based on the first k single objective optimal solutions of all single objective optimization problems.Therefore,the key to solving the complete Pareto front of multi-objective optimization problem is to design an effective method to solve the first k single objective optimal solutions of each single objective optimization problem.The main purpose of this paper is how to calculate k optimal solutions to Project Time Management Problem(PTMP),and proposes a ripple-spreading algorithm.By imitating the natural ripple spreading phenomenon,this algorithm determines the best scheme for the first k Management projects and makes the total Project Time shortest.The effectiveness of this method is verified by comparative experiments.
作者 刘骋越 李佳茹 胡小兵 LIU Cheng-yue;LI Jia-ru;HU Xiao-bing(College of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300»China)
出处 《系统工程》 CSSCI 北大核心 2020年第6期118-128,共11页 Systems Engineering
基金 国家自然科学基金资助项目(61472041)。
关键词 涟漪扩散算法 项目时间管理 多目标优化 前k个最优解 Ripple-spreading Algorithm Project Time Management Multi-objective Optimization k Best Solutions
  • 相关文献

参考文献6

二级参考文献44

  • 1强茂山,方东平,肖红萍,陈洋.建设工程项目的安全投入与绩效研究[J].土木工程学报,2004,32(11):101-107. 被引量:56
  • 2张友鹏,熊伟清.一种改进的实数编码遗传算法[J].铁道学报,2004,26(6):67-70. 被引量:2
  • 3黄俊东.建筑施工安全成本浅析[J].建筑安全,2005,20(11):26-27. 被引量:8
  • 4刘晓峰,陈通,张连营.基于微粒群算法的工程项目质量、费用和工期综合优化[J].土木工程学报,2006,39(10):122-126. 被引量:40
  • 5郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 6Van Veldhuizen DA. Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations [Ph.D. Thesis]. Graduate School of Engineering of the Air Force Institute of Technology, Air University, 1999.
  • 7Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Trans. on Evolutionary Computation, 2001,6(2): 182-197.
  • 8Van Veldhuizen DA, Lamont GB. On measuring multiobjective evolutionary algorithm performance. In: Zalzala A, Eberhart R, eds. Proc. of the Congress on Evolutionary Computation (CEC 2000), Vol. 1. Piscataway: IEEE Press, 2000. 204-211.
  • 9Mostaghim S, Teich J. A new approach on many objective diversity measurement. In: Branke J, Deb K, Miettinen K, Steuer R, eds. Proc. of the Practical Approaches to Multi-Objective Optimization. 2005. 1862-4405. http://drops.dagstuhl.de/opus/volltexte/ 2005/254
  • 10Khare V, Yao X, Deb K. Performance scaling of multi-objective evolutionary algorithms. In: Proc. of the 2nd Int'l Conf. on Evolutionary Multi-Criterion Optimization. 2003. 376-390.

共引文献427

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部