期刊文献+

智能放疗云平台在肝脏结构自动勾画中的应用 被引量:6

Application Study of the RAIC.OIS in Automatic Delineation of the Structure of Liver for Patients with Abdominal Tumor
下载PDF
导出
摘要 目的测试并定量评估智能放疗云平台(RAIC.OIS)软件自动勾画腹部肿瘤患者肝脏结构的可行性。方法选取我院2018年2月至11月收治的20例腹部肿瘤患者的定位CT图像进行回顾性研究。使用连心医疗的RAIC.OIS软件,对CT图像中的肝脏结构行自动勾画,所得结果与手工勾画肝脏结构进行比较。通过体积偏差(ΔV%)、质心偏差(Deviation of Centroid,DC)、Dice相似性指数(Dice Similarity Coefficient,DSC)和勾画时间,比较自动与手工勾画在体积、位置、形状、用时等方面的差异。使用敏感性指数(Sensitivity Index,SI)、包容性指数(Inclusiveness Index,IncI)和Jaccard系数(Jaccard Index,JAC)对自动勾画软件的准确性和效率进行定量化评估。结果比较自动和手工两种方式勾画肝脏结构,ΔV%为(2.16±3.59)%,DSC为0.92±0.02,DC为(0.38±0.35)cm,SI为0.93±0.02,IncI为0.91±0.03,JAC为0.85±0.04。自动勾画时间为(4.4±0.4)s,手工勾画时间为(507±74)s。结论使用RAIC.OIS软件对腹部肿瘤放疗患者的肝脏结构进行自动勾画,能够达到较好的准确性,且能够有效节约勾画时间,提高放疗工作效率。 Objective To test and evaluate the feasibility of the RAIC.OIS software in automatic delineation of the liver for patients with abdominal tumor.Methods The planning CT images of twenty patients with abdominal tumor enrolled from February to November 2018 were studied retrospectively.The structure of liver was automatically delineated in the CT images by the RAIC.OIS software of LINKING MED for each patient.Then,comparison between the automatic and manual delineation were made.The differences in volume,position,shape,and time using were assessed between the automatic and manual delineation by the differences in volume(ΔV%),deviation of centroid(DC),dice similarity coefficient(DSC),and delineation time.The accuracy and efficiency of the automatic delineation software were quantitatively evaluated by Sensitivity index(SI),inclusiveness index(IncI)and Jaccard coefficient(JAC).Results TheΔV%,DSC and DC between the automatic and manual delineation were(2.16±3.59)%,0.92±0.02,and(0.38±0.35)cm respectively.SI was(0.93±0.02),IncI was(0.91±0.03),JAC was(0.85±0.04),respectively.The time of automatic delineation and manual delineation were(4.4±0.4)s,(507±74)s respectively.Conclusion By using the RAIC.OIS software for automatic delineation of liver for patients with abdominal tumor,it could achieve good delineation accuracy and time saving.Thus the radiotherapy working efficiency could be improved effectively by using the software.
作者 秦伟 赵紫婷 时飞跃 王敏 魏晓为 QIN Wei;ZHAO Ziting;SHI Feiyue;WANG Min;WEI Xiaowei(Radiation Therapy Center,Nanjing First Hospital,Nanjing Medical University,Nanjing Jiangsu 210006,China;Department of Medical Equipment,Nanjing First Hospital,Nanjing Medical University,Nanjing Jiangsu 210006,China;Center of Medical Physics,Nanjing Medical University,Nanjing Jiangsu 210006,China)
出处 《中国医疗设备》 2021年第1期66-68,74,共4页 China Medical Devices
基金 国家自然科学基金面上项目(81773240) 江苏省自然科学基金面上项目(BK20181118)。
关键词 自动勾画 肝脏 可行性 放射治疗 automatic delineation liver feasibility radiotherapy
  • 相关文献

参考文献10

二级参考文献61

  • 1Furukawa D,Shimizu A,Kobatake H.Automatic Liver Segmentation Method based on Maximum A Posterior Probability Estimation and Level Set Method[C].The 10th International Conference on Medical Image Computing and Computer Assisted Intervention,Brisbane,2007:117-124.
  • 2Seghers D,Slagmolen P,Lambelin AY.Landmark based liver segmentation using local shape and local intensity models[C].The 10th International Conference on Medical Image Computing and Computer Assisted Intervention,Brisbane,2007:135-142.
  • 3Kalinmueller D,Lange T,Lamecker H.Shape constrained automatic segmentation of the liver based on a heuristic intensity model[C].The 10th International Conference on Medical Image Computing and Computer Assisted Intervention,Brisbane,2007:109-116.
  • 4Slagmolen P,Elen A,Seghers D.Atlas based liver segmentation using nonrigid registration with a B-spline transformation model[C].The 10th International Conference on Medical Image Computing and Computer Assisted Intervention,Brisbane,2007,197-206.
  • 5Gerig G,Jomier M,Chakos HM.A new validation tool for assessing and improving 3D object segmentation[J].Lecture Notes in Computer Science,2001,1(1):516-523.
  • 6Niessen WJ,Bouma CJ.Error metrics for quantitative evaluation of medical image segmentation[J].Performance Character-ization in Computer Vision,2000,1(1):275-284.
  • 7Heimann T,Ginneken B,Styner MA,et al.Comparison and evaluation of methods for liver segmentation from CT datasets[J].IEEE Transactions on Medical Imaging,2009,28(8):1251-1265.
  • 8Rusko L,Bekes G,Nemeth G.Fully automatic liver segmentation for contrast-enhanced CT images[C].The 10th International Conference on Medical Image Computing and Computer Assisted Intervention,Brisbane,2007:143-150.
  • 9Chao KS,Ozyigit G,Tran BN,等.头颈部肿瘤术后调强放疗患者失败的模式[J].国际放射肿瘤学生物物理杂志,2003,55:312-321.
  • 10Dawson LA,Anzai Y,Marsh L,等.头颈肿瘤保护腮腺的适形和分段调强治疗的局部复发模式[J].国际放射肿瘤学生物物理杂志,2000,46:1117-1126.

共引文献86

同被引文献45

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部