摘要
为了标准化实验室检测压力服装的压力性能,研发一套智能假人服装压力测试系统,系统包括9个分别嵌在假人模型体表的压力传感器,用于实时监测假人各部位服装压力值。智能假人分别穿着2种弹性经编面料制作的12种规格样衣,测试连续穿着4、12 h过程中的服装压力值,分析样衣的压力性能,并提出评价压力服装的压力疲劳性能指标。研究结果表明:同种规格样衣,面料不同,压力分布有明显差异;在多数测试区域,服装压力值随着面料伸长率的增加而增大;连续穿着4 h时的服装压力疲劳度可用于表征服装压疲劳性能;面料1和面料2制作的样衣压力疲劳度分别为3%~5%和3%~9%。
In order to establish standard laboratory for testing pressure performance of compression garment,a smart manikin measurement system for compression garment performance was developed,including nine high precision pressure sensors inserted on each region of manikin surface,which can real-time detect the multiple pressure values of compression garment.Two kinds of warp knitted fabrics were selected,and twelve specifications of experimental clothing samples were designed and manufactured.The contact pressure and pressure fatigue were tested on the smart manikin system lasted for 4 and 12 hours,respectively.The pressure performance was analyzed,and the evaluation index of pressure fatigue performance was proposed.It is found that the pressure distribution is significantly different with varied fabrics even at the same specification samples.In most human regions,the pressure value increases with fabric elongation.The pressure fatigue degree of continuous wearing for 4 hours can be used to characterize pressure fatigue performance of compression garment.The pressure fatigue of samples made from two kinds of fabrics ranges from 3%to 5%and from 3%to 9%,respectively.
作者
罗胜利
王永荣
廖银琳
刘宇
LUO Shengli;WANG Yongrong;LIAO Yinlin;LIU Yu(Guangzhou Fibre Product Testing and Research Institute,Guangzhou 511447,China;Guangzhou Inspection and Testing Certification Group Co.Ltd.,Guangzhou 511447,China;Fashion and Design College,Donghua University,Shanghai 200051,China)
出处
《东华大学学报(自然科学版)》
CAS
北大核心
2020年第6期896-901,914,共7页
Journal of Donghua University(Natural Science)
基金
广州市质量技术监督局科技资助项目(2017kj11)
国家青年自然科学基金资助项目(51505080)
上海市设计学IV类高峰学科资助项目(DD18005)
中央高校基本科研业务费专项资金资助项目(2232019G-08)。
关键词
服装压力
智能假人
测试系统
压力服装
压力疲劳
garment pressure
smart manikin
test system
compression garment
pressure fatigue