摘要
将截断方法引入非线性随机时滞微分方程的数值解构造中,构建了截断Caratheodory数值算法,当系数满足局部Lipschitz条件和Khasminskii型条件时,存在唯一的解析解。同样的条件下,在证明数值解的有界性基础上,通过分析数值解的误差验证了数值解的收敛性,并且给出了数值解的收敛阶数。
By introducing the truncated method into a nonlinear stochastic delay differential equation,a truncated Caratheodory numerical algorithm is constructed.As coefficients satisfy the local Lipschitz condition and the Khasminskii type condition,the unique explicit solution for the equation exists.Under the same conditions,based on the boundedness of the solution,the convergence of the numerical solution is proved through analyzing the error of numerical and explicit solutions.The convergence order of the numerical solution is also given.
作者
蔡雨欣
王子丰
尤苏蓉
CAI Yuxin;WANG Zifeng;YOU Surong(College of Science,Donghua University,Shanghai 201620,China)
出处
《东华大学学报(自然科学版)》
CAS
北大核心
2020年第6期1014-1020,共7页
Journal of Donghua University(Natural Science)
基金
上海市自然科学基金资助项目(17ZR1401300)。