期刊文献+

基于耦合模拟退火S3VM的信用预测

Coupled simulated annealing semi-supervised SVM for credit prediction
下载PDF
导出
摘要 在标记数据不足的情况下,半监督支持向量机(S3VM)可以有效利用标记数据和未标记数据提高模型性能。针对传统模拟退火S3VM方法在低温时容易陷入局部最优的问题,提出将耦合模拟退火用于半监督支持向量机的超参数选取,即CSAS3VM方法,并应用到信用预测中。在爬取的企业信用和UCI的个人信用两种数据集上与7种已有的方法进行对比实验,精度和F-1值两项指标的实验结果表明,提出的CSAS3VM方法明显优于模拟退火半监督支持向量机和其它传统方法,并且在5组包含均衡和不均衡的数据集上表现稳定。 In the case of small amount of labelled data,semi-supervised support vector machine(S3VM)can effectively utilize the labeled data and unlabeled data to improve the performance of the model.Aiming at the problem that the traditional simulated annealing S3VM method is easy to fall into local optimum at low temperature,the coupled simulation annealing was proposed for the semi-supervised support vector machine parameter selection,namely CSAS3VM method,and applied to credit prediction.Compared with seven existing methods on both the crawled corporate credit and UCI’s personal credit datasets,the experimental results of two indicators of precision and F-1 scores show that the CSAS3VM proposed is obviously superior.In addition,CSAS3VM performs stably well under five subsets of experiment data including imbalance and balance datasets.
作者 李琳 王国伟 张杰 周栋 LI Lin;WANG Guo-wei;ZHANG Jie;ZHOU Dong(School of Computer Science and Technology,Wuhan University of Technology,Wuhan 430070,China;School of Computer Science and Engineering,Hunan University of Science and Technology,Xiangtan 411201,China)
出处 《计算机工程与设计》 北大核心 2021年第1期196-205,共10页 Computer Engineering and Design
基金 国家自然科学基金项目(61772249、61876062) 国家社会科学基金项目(15BGL048) 湖北省自然科学基金计划重点基金项目(创新群体)(2017CFA012)。
关键词 信用预测 半监督支持向量机 耦合模拟退火 精度 F-1值 credit prediction semi-supervised SVM coupled simulated annealing precision F-1 measure
  • 相关文献

参考文献4

二级参考文献46

  • 1粟勤,田秀娟.近二十年海外银行中小企业贷款研究及新进展[J].江南(诗),2011(1):53-62. 被引量:1
  • 2Deng H, Lyu M R, King I. A generalized Co ItlTS algorithm and its application to biprtite graphs [C]//Proc of the 15th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2009:239-248.
  • 3Sun Y, Han J. Mining heterogeneous information networks: A structural analysis approach [J]. ACM SIGKDD Explorations Newsletter, 201,3, 14(2) : 20-28.
  • 4KarleBach G, Shamir R. Constructing logical models of gene regulatory networks by integrating transcription faetor-DNA interactions with expression data.* An entropy based approach [J]. Journal of Computational Biology, 2012, 19 (l) 30-41.
  • 5Gao J, Liang F, Fan W, et al. A graph-based consensus maximization approach for combining multiple supervised and unsupervised models [J]. IEEE Trans on Knowledge and Data Engineering, 2013, 25(1): 15-28.
  • 6Chiang M F, Liu J, Wang J I., et al. Exploring heterogeneous information networks and random walk with restart for academic search [J]. Knowledge and Information Systems, 2013, 7(2): 1 24.
  • 7Sun Y, Yu Y, Han J. RankingLbased clustering of heterogeneous information networks with star network schema [C] //Proc of the 15th ACM SIGKDD lnt Conf on Knowledge Discovery and Data Mining. New York: ACM, 2009:797-806.
  • 8Yin Z, l.i R, Mei Q, et al. Exploring social tagging graph for web object classification [C] //Proc of the 15th ACM SlGKDD Int Conf on Knowledge Discovery and Data Mining. New York= ACM, 2009= 957 966.
  • 9Ng M K P, Li X, Ye Y. MultiRank: Co-ranking for objects and relations in multi-relational data [C]//Proc of the 17th ACM SIGKDD lnt Conf on Knowledge Discovery and Data Mining. New York= ACM, 2011:1217-1225.
  • 10Deng H, Han J, Zhao B, et al. Probabilistic topic models with biased propagation on heterogeneous information networks [C] //Proc of the 17th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2011, 1271-1279.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部