摘要
马尔可夫链广泛应用于金融、互联网、语言识别、微生物基因等领域。因此提出了一种新的高阶多元马尔可夫链模型,并给出了新模型的参数估计方法,其估计参数仅n(2s+1)+s个,少于传统模型的估计参数个数n(s+1)~2。另外,本文通过数值实验说明了新模型不仅保持了传统模型的预测性能,而且在节省计算资源方面具有较大的优越性。
Markov chains are widely used in the fields of finance,internet,speech recognition,microbial genes,and so on.In this paper,a new higher-order multivariate Markov chain model together with the associated the parameter estimation method is proposed.The new higher-order multivariate Markov chain model only needs to compute parameters,which is less than the traditional model required to evaluate parameters.Furthermore,numerical examples show that the new model not only maintains the predictive performance of traditional models,but also presents a great advantage in saving computing resources.
作者
阙素琴
张晓薇
滕忠铭
QUE Su-qin;ZHANG Xiao-wei;TENG Zhong-ming(College of Computer and Information Science,Fujian Agricultural and Forestry University,Fuzhou 350002,China)
出处
《三明学院学报》
2020年第6期9-16,共8页
Journal of Sanming University
基金
福建农林大学杰出青年基金项目(xiq201727)。
关键词
马尔可夫链
多元马尔可夫链
高阶多元马尔可夫链
参数估计
Markov chain
multivariate Markov chain
higher-order multivariate Markov chain
parameter estimation