期刊文献+

基于DBSCAN算法的告警数据聚类研究 被引量:2

Research on Alarm Log Clustering Based on DBSCAN Algorithm
下载PDF
导出
摘要 提出了基于DBSCAN(density-based spatial clustering of application with noise)和多约束活动窗口算法的告警时间序列预处理方法。根据原始告警数据的特点,利用DBSCAN聚类算法以时间维度将原流水告警数据划分为多个告警事件,并通过约束条件选取DBSCAN最佳输入参数,在各个时间段利用滑动时间窗口提取告警事务。实验结果表明,该方法能有效滤除单一告警事务(噪声告警)对实际事务分析的影响,提升告警事务分析的总体质量,同时可根据实际需要利用多约束条件选择最佳参数,有效提升告警事务总体分析能力。 A method of alarm time series preprocessing using DBSCAN and muti-constrained algorithm was proposed.According to the characteristics of original alarm data,the DBSCAN density clustering algorithm is used to divide the original alarm data into multiple alarm events in time dimension and multi-constrain method is used to optimize the parameters of the inputs of DBSCAN.By using the optimal input parameters of DBSCAN and the sliding time window in each time period,the alarm event is extracted from alarm time series.The experimental results show that this method can effectively filter out the noise impact in order to improve the overall quality of actual alarm practice analysis,and use multi-constrain method to effectively improve the overall alarm log analysis.
作者 邓翠艳 姚旭清 DENG Cuiyan;YAO Xuqing(Polytechnic Institute, Taiyuan University of Technology, Taiyuan 030027, China;China Mobile Group Shanxi Co.,Ltd, Taiyuan 030009, China)
出处 《太原理工大学学报》 CAS 北大核心 2021年第1期111-116,共6页 Journal of Taiyuan University of Technology
基金 教育部中国移动科研基金资助项目:基于复杂网络理论的面向未来业务通信网络智能管理关键技术研究(MCM20170103)。
关键词 告警数据分析 多约束条件 DBSCAN算法 滑动时间窗口法 alarm log analysis muti-constrained algorithm DBSCAN clustering sliding time window
  • 相关文献

参考文献4

二级参考文献22

  • 1王振华,王攀,张顺颐.基于综合统计特征的Skype流量分析与识别[J].南京邮电大学学报(自然科学版),2006,26(1):1-7. 被引量:14
  • 2Mitchell T M. Machine learning [M]. [S.l.] : McGraw-Hill Education, 1997.
  • 3Mitchell T M. Does machine learning really work? [ J]. AI Magazine, 1997,18(3) :11-20.
  • 4Frank J. Machine learning and intrusion detection:current and future directions [ C ]//Proceedings of the National 17th Computer Security Conference, 1994.
  • 5Dunnigan T, Ostrouchov G. Flow characterization for intrusion detection[ R/OL]. ( 2001 - 11 ). Oak Ridge National Laboratory. http:// www. csm. oml.gov/~ost/id/tm. ps.
  • 6Roughan M, Sen S, Spatscheck O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification [ C ]//ACM SIGCOMM Internet Measurement Workshop 2004 ,Taormina, Sicily, Italy ,2004.
  • 7McGregor A, Hall M, Lorier P, et al. Flow clustering using mathine learning techniques [ C]//Passive & Active Measurement Workshop 2004 ( PAM 2004), France, 19-20 April 2004.
  • 8Soule A,Salamatian K,Taft N,et al. Flow classification by histograms or how to go on safari in the intcrnet [C]//ACM Sigmctrics, New York, USA, June 2004.
  • 9Zander S, Nguyen T, Armitage G. Self-learning IP traffic elassification based on statistical flow characteristics [ C ]//Passive & Active Measurement Workshop(PAM) 2005, Boston, USA, March/April 2005.
  • 10Zuev D, Moore A. Traffic classification using a statistical approach [C]// Passive & Active Measurement Workshop, Boston, USA, March/April 2005.

共引文献100

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部