摘要
本文对层状周期结构的能量传输谱预测方法进行了研究.在考虑几何参数、物理参数单独变化以及同时变化3种情况下,通过构建深层反向传播(BP)神经网络,实现层状周期结构能量传输谱的精准预测.与径向基函数(RBF)神经网络进行对比实验,实验结果验证了所提方法的有效性.
In this paper,the prediction of the energy transmission spectrum for layered periodic structures is studied.By considering three cases of geometric parameters and physical parameters changing individually or simultaneously,a deep back propagation(BP)neural network is constructed to realize accurate prediction of the energy transmission spectrum of layered periodic structure.A comparison of the predicted results with those obtained by the radial basis function(RBF)neural network verifies the effectiveness of the proposed method.
作者
刘陈续
于桂兰
LIU Chenxu;YU Guilan(School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China)
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2021年第1期88-95,共8页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金资助项目(11772040)。
关键词
层状周期结构
深层反向传播神经网络
径向基函数神经网络
能量传输谱
衰减域
layered periodic structure
deep back propagation(BP)neural network
radial basis function(RBF)neural network
energy transmission spectrum
attenuation domain