期刊文献+

电力电子电路PCB电场串扰及屏蔽研究 被引量:5

Research on Electric Field Crosstalk and Shielding of PCB Conductors in Power Electronic Circuits
下载PDF
导出
摘要 由于开关电源中存在高du/dt干扰源,这对PCB上的电压采样等敏感导线将产生强烈的电场串扰。本文通过COMSOL软件研究了PCB上干扰源和敏感导线间的寄生电容及屏蔽方法和效果,仿真获取了不同干扰源导线宽度w1、敏感导线宽度w2,长度为L,以及两者间距d下的寄生电容Cp值,再采用拟合函数的方法,得到了寄生电容Cp与[w1,w2,d]的关联函数,并进行了特性分析。在两根导线之间插入宽度为w3、长度为L1、与干扰源和敏感导线距离分别为d1和d2的屏蔽地线,分析屏蔽系数η与[w3/d,d 1/d2,L 1/L]之间的关联。最后通过实验验证了PCB电场串扰特性和屏蔽特性与理论分析基本吻合。 Due to the existence of high du/dt interference sources in the switching power supply,this will cause strong electric field crosstalk to sensitive wires such as voltage sampling on the PCB.This article uses COMSOL software to study the parasitic capacitance and shielding methods and effects between interference sources and sensitive wires on the PCB.The parasitic capacitance Cp values of different interference source wire width w1,sensitive wire width w2,a nd the distance d between the two are obtained by COMSOL software simulation.Then,the relationship between the parasitic capacitance Cp and[w1,w2,d]are obtained by the fitting function method.Then,the shield ground is inserted between the two wires,and the correlation between the shielding coefficientηand[w3/d,d1/d2,L1/L]is also analyzed.Finally,it is verified by experiments that the crosstalk characteristics and shielding characteristics of PCB electric field are basically consistent with the theoretical analysis.
作者 袁义生 兰梦罗 YUAN Yisheng;LAN Mengluo(East China Jiaotong University,Nanchang Jiangxi 330013 China)
机构地区 华东交通大学
出处 《电子器件》 CAS 北大核心 2020年第6期1215-1221,共7页 Chinese Journal of Electron Devices
基金 国家自然科学基金项目(45678921) 国家自然科学基金项目(51467005) 江西省自然自然科学基金项目(20181BAB206033)。
关键词 PCB电场串扰 线间寄生电容 屏蔽系数 有限元分析 PCB electric field crosstalk parasitic capacitance between lines shielding coefficient Finite element analysis
  • 相关文献

参考文献8

二级参考文献73

  • 1陈恒林,钱照明.用于电磁干扰分析的共模扼流圈高频模型[J].浙江大学学报(工学版),2007,41(11):1845-1849. 被引量:14
  • 2毕显德.电磁场理论[M].北京:电子工业出版社,1985..
  • 3蔡仁刚.电磁兼容原理、设计和预测技术[M].北京:北京航空航天大学出版社,1997..
  • 4Vollaire C, Nicolas L. Preconditioning techniques for the conjugate gradient solver on a parallel distributed memory computer[J]. IEEE Transactions onMagnatics, 1998, 34(5): 3347-3350.
  • 5Mifime T, lwashita T, Shimasaki M. A fast solver for FEM analyses using the parallelized algebraic rnultigrid method[J]. IEEE Transactions onMagnetics, 2002, 38(2): 369-372.
  • 6Ito F, Amemiya N. Application of parallelized SOR method to electromagnetic field analysis of superconductors[J] . IEEE Transactions onApplied Superconductivity, 2004, 14(2): 1874-1877.
  • 7Choi-Grogan Y S, Eswar K, Sadayappan P, et al. Sequential and parallel implementations of the partitioning finite element method[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(12): 1609-1616.
  • 8Konrad A, Graovac M. The finite element modeling of conductors and floating potentials[J]. IEEE Transactions on Magnetics, 1996, 32(5): 4329-4331.
  • 9Konrad A, Chari M V K, Csendes Z J. New finite element techniques for skin effect problems[J]. IEEE Transactions on Magnetics, 1982, 18(2): 450-455.
  • 10Dascalescu L, Ribardiere P. Computational estimation of ESD conditions between a charged body and a conductor of floating potential[J]. IEEE Transactions on Industry Applications, 2001, 37(3): 759-765.

共引文献133

同被引文献27

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部