期刊文献+

GEO-UAV空天双基SAR二维分辨能力分析 被引量:4

Two-dimensional resolution ability of GEO-UAV bistatic SAR
下载PDF
导出
摘要 收发平台分置于地球同步轨道(GEO)和无人机(UAV)的GEO-UAV空天双基合成孔径雷达(SAR)系统能够实现对重点观测区域高精度、高时相的观测,二维分辨能力为其重要的系统指标。针对GEO-UAV空天双基SAR的二维分辨能力进行了分析:首先,基于梯度法给出了空天双基SAR矢量化的二维分辨率的计算方法;其次,基于GEO-UAV空天双基SAR的构型计算了其距离分辨率、方位分辨率以及二维分辨矢量夹角;最后,基于系统的二维分辨能力提出了GEO-UAV空天双基SAR的构型设计准则,通过点目标仿真对该准则的有效性进行了验证。所提设计准则能够为GEO-UAV空天双基SAR的系统设计提供有力支撑。 Mounted on the Geostationary Earth Orbit(GEO) and Unmanned Aerial Vehiclel(UAV) platforms, the GEO-UAV bistatic Synthetic Aperture Radar(SAR) can achieve precise and quick observation on the interested areas. The two-dimensional resolution ability is important performance metrics. The analysis on the two-dimensional resolution ability of GEO-UAV bistatic SAR is given. First, the calculation method of bistatic SAR vectored two-dimensional resolution based on the gradient method is given. Then, the range resolution, azimuth resolution and the angle between the azimuth and range vector are calculated according to the configuration of the GEO-UAV bistatic SAR. Finally, based on the two-dimensional resolution ability of the system, a configuration criterion for GEO-UAV bistatic SAR is proposed, which is verified via experiments on simulated point targets. The proposed configuration criterion is beneficial to the system design of GEO-UAV bistatic SAR.
作者 李谨成 郭德明 LI Jincheng;GUO Deming(Nanjing Researeh Institule of Electronics Technology,Nanjing 210039,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第12期2374-2380,共7页 Journal of Beijing University of Aeronautics and Astronautics
关键词 合成孔径雷达(SAR) 双基雷达 星机双基SAR SAR分辨率 梯度法 Synthetic Aperture Radar(SAR) bistatic radar spaceborne-airborne bistatic SAR SAR resolution gradient method
  • 相关文献

参考文献2

二级参考文献72

  • 1王从雷,邓云凯,赵凤军.合成孔径雷达多波速通道间相位误差研究[J].测试技术学报,2005,19(3):315-319. 被引量:3
  • 2孙佳.国外合成孔径雷达卫星发展趋势分析[J].装备指挥技术学院学报,2007,18(1):67-70. 被引量:20
  • 3高庆军,宋泽考.美国“空间雷达”计划发展动态[J].国际太空,2007(5):5-8. 被引量:2
  • 4Goldstein R, Rosen P, and Werner C. ERS-1 bistatic radar images[C]. International Geoscience and Remote Sensing Symposium(IGARSS), Pasadenat, USA, 1994: 1-7.
  • 5Martinsek D and Goldstein R. Bistatic radar experiment[C]. European Conference on Synthetic Aperture Radar(EUSAR) Friedrichshafen, Germany, 1998: 31-34.
  • 6Rodriguez-Cassola M, Prats P, Baumgartner S V, et al.. New processing approach and results for bistatic TerraSAR-X/F-SAR spaceborne-airborne experiments[C]. 2009 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2009, Cape Town, 2009, 2: Ⅱ-242-Ⅱ-245.
  • 7Walterscheid I, Espeter T, Brenner A R, et al.. Bistatic SAR experiments with PAMIR and TerraSAR-X setup, processing, and image results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3268-3279.
  • 8Wang R., Loffeld O, Nies H, et al.. Frequency-domain bistatic SAR processing for spaceborne/airborne configuration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1329-1345.
  • 9Loffeld O, Nies H, Peters V, et al.. Models and useful relations for bistatic SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2031-2038.
  • 10Neo Y L, Wong F H, and Cumming I G. A comparison of point target spectra derived for bistatic SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2481-2492.

共引文献65

同被引文献36

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部