摘要
针对无约束一维全局优化问题,提出一种基于重点取样的统计模拟算法,在原始积分水平集方法中引入交叉熵方法进行样本点选择,并在迭代过程中保留精英样本集.在最后的迭代中选取当前样本集对应的最小值点作为最优点.在一定条件下证明了算法收敛到问题的全局最优解.实验结果表明,所提算法采样效率更高,函数计算次数和运行时间比修正的纯自适应搜索方法更有优势.
An importance sampling simulation method is proposed for global optimization problem with single variable.Based on the integral level set method,the cross-entropy method is used to select the sample set,and retain the elite set in the iterative process.At the last iteration,the point with minimal value in the current sample set is chosen as the optimal solution.The convergence of the proposed method is proved under certain assumptions.Experimental results show that compared with the existing level value estimation methods,the proposed method is more efficient in sampling and has more advantages in function evaluation and CPU-time than the modified pure adaptive search method.
作者
曾鑫
丁卫平
ZENG Xin;DING Weiping(College of Mathematics and Computer Science,Fuzhou University,Fuzhou 350108,China;School of Mathematics,Hunan Institute of Science and Technology,Yueyang 414006,China)
出处
《湖南理工学院学报(自然科学版)》
CAS
2021年第1期7-13,共7页
Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金
国家自然科学基金项目(11570174,12071398)
湖南省自然科学基金项目(2020JJ4567)。
关键词
重点取样
水平值估计
交叉熵
精英样本
importance sampling
level value estimation
cross entropy
elite sample set